タグ「割合」の検索結果

2ページ目:全17問中11問~20問を表示)
九州工業大学 国立 九州工業大学 2011年 第3問
正の実数$a$と関数$f(x)=|x^2-a^2| \ (-2a \leqq x \leqq 2a)$がある.$y=f(x)$のグラフを$y$軸のまわりに回転させてできる形の容器に$\pi a^2 (\text{cm}^3 / \text{秒})$の割合で水を静かに注ぐ.水を注ぎ始めてから容器がいっぱいになるまでの時間を$T$(秒)とする.ただし,長さの単位はcmとする.次の問いに答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)水面の高さが$a^2$(cm)になったとき,容器中の水の体積を$V$(cm$^3$)とする.$V$を$a$を用いて表せ.
(3)$T$を$a$を用いて表せ.
(4)水を注ぎ始めてから$t$秒後の水面の高さを$h\;$(cm)とする.$h$を$a$と$t$を用いて表せ.ただし,$0<t<T$とする.
(5)水を注ぎ始めてから$t$秒後の水面の上昇速度を$v\;$(cm/秒)とする.$v$を$a$と$t$を用いて表せ.ただし,$0<t<T$とする.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第1問
三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$は辺$\mathrm{A}_0 \mathrm{B}_0$の長さが$a$,$\angle \mathrm{A}_0=60^\circ$,$\angle \mathrm{B}_0=90^\circ$の直角三角形であり,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$は辺${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime$の長さが$a$,$\angle {\mathrm{A}_0}^\prime=45^\circ$,$\angle {\mathrm{B}_0}^\prime=90^\circ$の直角三角形である.右図に示すように三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の$3$つの辺上にそれぞれ点$\mathrm{D}_1$,$\mathrm{A}_1$,$\mathrm{B}_1$をとり,正方形$\mathrm{B}_0 \mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$を作る.次に,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}$の$3$つの辺上に点$\mathrm{D}_2$,$\mathrm{A}_2$,$\mathrm{B}_2$をとり,正方形$\mathrm{B}_1 \mathrm{D}_2 \mathrm{A}_2 \mathrm{B}_2$を作る.これを繰り返し,正方形$\mathrm{B}_{j-1} \mathrm{D}_j \mathrm{A}_j \mathrm{B}_j$を作る.その正方形の面積を$S_j$とおく.ただし,$j=1,\ 2,\ \cdots$である.同様な操作で,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$にも正方形${\mathrm{B}_{j-1}}^\prime {\mathrm{D}_j}^\prime {\mathrm{A}_j}^\prime {\mathrm{B}_j}^\prime$を作り,その正方形の面積を${S_j}^\prime$とおく.これらの図形について以下の問いに答えよ.
(図は省略)

(1)$S_1$を$a$を用いた式で示せ.
(2)$S_j$を$a$と$j$を用いた式で示せ.
(3)三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$内に正方形を描くことを無限に繰り返すとき,正方形の面積の総和$S_\mathrm{T}$が三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の面積$S_0$に占める割合を求めよ.
(4)$\displaystyle c_j=\frac{S_{j+2}}{{S_j}^\prime}$で定義される一般項$c_j$を持つ無限級数は,収束するか発散するかを,根拠を式で示した上で答えよ.
青山学院大学 私立 青山学院大学 2011年 第5問
曲線$y=e^{x^2}-1 (x \geqq 0)$を$y$軸のまわりに回転させてできる容器がある.この容器に,時刻$t$における水の体積が$vt$となるように,単位時間あたり$v$の割合で水を注入する.ただし,$v$は正の定数であり,$y$軸の負の方向を鉛直下方とする.

(1)不定積分$\displaystyle \int \log (y+1) \, dy$を求めよ.
(2)水面の高さが$h$となったときの容器内の水の体積$V$を,$h$を用いて表せ.ただし,$h$は容器の底から測った高さである.
(3)水面の高さが$e^{10}-1$となった瞬間における,水面の高さの変化率$\displaystyle \frac{dh}{dt}$を求めよ.
京都薬科大学 私立 京都薬科大学 2011年 第2問
あるジュースにはおまけとして$1$本につき$1$つのキャラクターグッズが付いている.キャラクターグッズは全部で$6$種類あり,現在$2$種類持っているとする.各キャラクターグッズは,同じ割合で封入されているとして,以下の$[ ]$にあてはまる数または式を記入せよ.

(1)今からカウントして,$3$種類目のキャラクターグッズを得るまでに購入するジュースの本数を$X$とする.

(i) $X=1$となる確率は$[ ]$である.
(ii) $X=2$となる確率は$[ ]$である.
(iii) $X=k$となる確率を$P(k)$とするとき,$\displaystyle \sum_{k=1}^n kP(k)=[ ]$となる.

(2)ジュースを$5$本,まとめ買いしたとする.

(i) この$5$本のおまけの中に,少なくとも$1$つは,現在持っていないキャラクターグッズが含まれる確率は$[ ]$である.
(ii) 現在持っていないキャラクターグッズを,ちょうど$1$つだけ得る確率は$[ ]$である.
(iii) 現在持っていないキャラクターグッズ$4$種類を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.$5$つのおまけの中で,$\mathrm{A}$が$2$つ$\mathrm{B}$が$1$つ,残り$2$つはすでに持っているキャラクターグッズが出る確率は$[ ]$である.
\mon[$\tokeishi$] 現在持っていないキャラクターグッズ$2$種類をちょうど$1$つずつだけ(残り$3$つはすでに持っているキャラクターグッズを)得る確率は$[ ]$である.
長崎大学 国立 長崎大学 2010年 第4問
$a$を$a>1$を満たす定数とする.原点Oと点P$(1,\ 0)$を線分で結び,点Pと点Q$(a,\ \log a)$を曲線$y=\log x$で結ぶ.このようにして得られる曲線OPQを,$y$軸の周りに1回転させてできる立体の容器を考える.ただし,OPを含む部分を底面として,水平に置くものとする.次の問いに答えよ.

(1)この容器の容積$V$を$a$を用いて表せ.
(2)$m$を正の定数とする.この容器に,単位時間あたり$m$の水を一定の割合で注ぎ入れる.ただし,最初は水が全く入っていない状態とする.注ぎ始めてから時間$\displaystyle t \ \left( 0<t<\frac{V}{m} \right)$が経過したとき,底面から水面までの高さを$h$,水面の上昇する速度を$v$とする.$h$および$v$を$m,\ t$を用いて表せ.
鳥取大学 国立 鳥取大学 2010年 第3問
次の問いに答えよ.

(1)2人乗りの車を持っているA君は,B君,C君とP地点からQ地点へ出かけることにした.B君はA君の車に乗り,C君は歩くこととし,3人同時にP地点を出発した.しばらくしてB君は車から降りて歩くこととし,A君はC君を迎えに引き返し,C君を乗せてQ地点へ向かうと,ちょうどQ地点でB君と一緒になった.車の速さはつねに毎時$v\;$kmで,歩く速さは2人とも毎時$p\;$km \ ($v>p$)とする.乗り降りに要する時間は無視する.

(2)P地点からQ地点までの平均の速さを求めよ.
(3)P地点からQ地点までの移動でどれだけの時間をA君は1人で車に乗っていたか,その割合を求めよ.

(4)2人乗りの車を持っているA君は,B$_1$君,B$_2$君,$\cdots$,B$_n$君とP地点からQ地点へ出かけることにした.最初B$_1$君はA君の車に乗り,残りの$(n-1)$人は歩くこととし,全員同時にP地点を出発した.しばらくしてB$_1$君は車から降りて歩くこととし,A君はB$_2$君を迎えに引き返し,B$_2$君を乗せてQ地点へ向かう.途中,歩いているB$_1$君と出会ったところでB$_2$君を降ろし,B$_3$君を迎えに引き返す.これを繰り返して最後のB$_n$君を乗せてQ地点へ向かうと,ちょうどQ地点で全員が一緒になった.車の速さはつねに毎時$v\;$kmで,歩く速さは全員同じで毎時$p\;$km$(v>p)$とする.乗り降りに要する時間は無視する.「$n$は,2以上の整数とする.」

(5)P地点からQ地点までの平均の速さを求めよ.
(6)P地点からQ地点までの移動でどれだけの時間をA君は1人で車に乗っていたか,その割合を求めよ.
浜松医科大学 国立 浜松医科大学 2010年 第4問
ある感染症の対策について考える.感染症の防御のためには感染拡大の試算が必要であり,感染拡大は自然にはその感染症の感染力と,致死性によって予測される.感染経路は,飛沫,接触,飲食などいろいろあり,感染力の制御,つまり感染を広げないために,ワクチン開発はもちろんであるが,外出規制(イベントの自粛や学級閉鎖など),手洗い呼びかけ,などが有効である. \\
ここでは簡単のために,$1$つの感染症のみを考え,ある一定の集団(たとえば$1000$人程度の島)を対象とし,外部との接触,出入りがないと仮定する.最初の時点での過去感染者,未感染者,現在感染者の割合をそれぞれ$x_0,\ y_0,\ z_0$とする.現在感染者は$1$か月後にはすべて過去感染者となり,一度感染した人はもう感染しない.また幸いなことにこの感染により死者は生じず,また簡単のために他要因による死者,あるいは出生,転入出もないとする. \\
$1$か月ごとの変動を見ることとし,$i$か月後の時点の上記の割合をそれぞれ$x_i,\ y_i,\ z_i$で示す.症状は丁度$1$か月続くので,一人の人が現在感染者として数えられるのは$1$回のみである. \\
過去感染者は,それまでの過去感染者に,$1$か月前の現在感染者を足したものである.また,現在感染者は,$1$か月前の未感染者と$1$か月前の現在感染者の接触頻度と,この感染症の感染力によって決まる.接触頻度の係数を$a$,感染力の係数を$b$とすると,現在感染者の割合は$1$か月前の現在感染者の割合,未感染者の割合,$a,\ b$の$4$つをかけたもので求められる. \\
$x_0=0$,$y_0=0.9$,$z_0=0.1$として,以下の問いに答えよ.計算は小数点以下第$4$位を四捨五入して求めよ.

(1)$x_i,\ y_i,\ z_i$を,$x_{i-1},\ y_{i-1},\ z_{i-1},\ a,\ b$で表せ.
(2)$a=1,\ b=1$として,$x_1,\ y_1,\ z_1,\ x_2,\ y_2,\ z_2,\ x_3,\ y_3,\ z_3$をそれぞれ求めよ.
(3)$a=1$,感染力の係数$b$を$2$とした時の$x_1,\ x_2,\ x_3$を求めよ.
(4)手洗いの徹底や外出規制が最初からなされたとして,$a=0.5$,$b=1$とした時の,$x_1,\ x_2,\ x_3$を求め,(2),(3)の結果と共に,縦軸を過去感染者の割合,横軸を時間として,$3$つの場合の変化を同一座標上にグラフで示せ.
スポンサーリンク

「割合」とは・・・

 まだこのタグの説明は執筆されていません。