タグ「前年」の検索結果

1ページ目:全4問中1問~10問を表示)
山梨大学 国立 山梨大学 2013年 第1問
次の問いに答えよ.

(1)$|x-2|+|x+3|<6$を満たす実数$x$の値の範囲を求めよ.
(2)$a_1=1,\ a_2=2,\ a_{n+2}-2a_{n+1}+a_n=1$で定められる数列$\{a_n\}$の一般項$a_n$を求めよ.
(3)毎年$1$月の人口調査で,人口が前年の$98 \%$に減少していく都市がある.この都市の人口が,初めて今年の調査の$70 \%$以下になるのは何年後の調査のときか.ただし,$\log_{10}2=0.3010$,$\log_{10}7=0.8451$として,答えは整数で求めよ.
(4)直線$y=2x$と放物線$\displaystyle y=x^2+4x+\cos 2\theta+\frac{1}{2} \ (0 \leqq \theta \leqq 2\pi)$がある.放物線に直線が接するときの$\theta$の値を求めよ.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle x+\frac{1}{x}=3$のとき,$\displaystyle x^2+\frac{1}{x^2}=[ア]$であり,$x^3-5x^2+7x-2=[イ]$である.
(2)定義域を$\displaystyle 0 \leqq x \leqq \frac{\pi}{3}$とするとき,$f(x)=\cos 3x+\sin 3x$の最大値は$[ウ]$であり,最小値は$[エ]$である.
(3)ある工業製品の価格が前年比で毎年$10 \;\%$ずつ下落している.現在の価格が$1000$円であるならば,$3$年後の価格は$[オ]$円となり,価格がはじめて$200$円を下回るのは$[カ]$年後である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とし,解答欄には整数値を入れよ.
(4)曲線$y=x^3+1$と直線$\ell$が点$\mathrm{A}$で接している.また,曲線$y=x^2+ax+1 (a<0)$も$\ell$と$\mathrm{A}$で接している.このとき,$a=[キ]$であり,$\ell$の方程式は$[ク]$である.
(5)定数$a$に対して,$\displaystyle \int_a^x f(t) \, dt=x^2+x-6$であるとき,$f(x)=[ケ]$,$a=[コ]$である.
広島修道大学 私立 広島修道大学 2013年 第2問
次の問いに答えよ.

(1)$2012$年の$1$年間にある県を訪れた観光客の数は,前年$1$年間に比べて$8 \; \%$増加したという.今後も同じ割合で観光客の数が増えていくとした場合,初めて観光客の数が$2012$年の$2$倍以上になるのは何年後か.答えを整数で求めよ.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(2)下の図のような道がある.地点$\mathrm{A}$を出発して,さいころを投げて$5$以上の目が出れば上に$1$区画進み,$4$以下の目が出れば右に$1$区画進むことにする.ただし,進む道がないときは動かない.さいころを$7$回投げるとき,次の確率を求めよ.

(i) 地点$\mathrm{B}$に行き着く確率
(ii) 地点$\mathrm{C}$を経由して地点$\mathrm{B}$に行き着く確率
(図は省略)
岩手大学 国立 岩手大学 2011年 第3問
次の文章について,後の問いに答えよ.\\ \\
\quad 地球温暖化問題に関して,二酸化炭素の排出量の削減が叫ばれている.2008年に日本で開かれたサミットでは,42年後の2050年までに,年当たりの排出量を2008年のときと比較して50$\%$以上削減する,という目標が提言された.この目標を達成するために,前年比同率で削減することを考える.\\
\quad 2008年における排出量を$a \ (a>0)$とし,毎年,前年の$d \times 100 \% \ (0<d<1)$を減らすこととする.2008年の1年後の2009年の排出量の目標は[\bf ア]である.2008年から$n$年後の年間排出量を$a_n$とおくと,$a_n=[イ]$である.目標を達成するには$\displaystyle a_{42} \leqq \frac{a}{2}$,つまり,$d$を用いた式で表せば,
\[ [ウ] \leqq \frac{1}{2} \]
が成り立てばよい.両辺の逆数をとれば$\displaystyle \frac{1}{[ウ]} \geqq 2$となる.ところで,不等式
\[ (1+d)^{42} < \frac{1}{[ウ]} \ \, \cdots\cdots \maru{1} \]
が成り立つことがわかる.従って,
\[ (1+d)^{42} \geqq 2 \qquad\qquad \cdots\cdots \maru{2} \]
を満たす$d$を見つければ目標を達成することは明らかである.不等式\maru{2}の左辺は,二項定理により
\[ (1+d)^{42} =\sum_{r=0}^{42} [エ] \]
と表される.これを用いると,\underline{$d=0.02$は不等式\maru{2}を満たす}ことがわかる.つまり,毎年$2\%$の削減を2009年から行ったとすれば,42年後の2050年の排出量は2008年の$50\%$未満となることがわかった.

(1)文章中の[ア]~[エ]に当てはまる式を答えよ.
(2)$0<d<1$とするとき,不等式\maru{1}を証明せよ.
(3)下線部の命題を証明せよ.
(4)毎年$2\%$の削減を行った場合でも,42年間の排出量の合計は,削減率を0のまま2008年と同じ排出量を同じ期間続けたときの排出量の合計の$\displaystyle \frac{7}{12}$倍より大きくなることを証明せよ.
スポンサーリンク

「前年」とは・・・

 まだこのタグの説明は執筆されていません。