タグ「到達」の検索結果

3ページ目:全36問中21問~30問を表示)
金沢大学 国立 金沢大学 2013年 第2問
座標平面上の点$\mathrm{P}$は,硬貨を$1$回投げて表が出れば$x$軸の正の方向に$2$,裏が出れば$y$軸の正の方向に$1$だけ進むことにする.最初,$\mathrm{P}$は原点にある.硬貨を$5$回投げた後の$\mathrm{P}$の到達点について,次の問いに答えよ.

(1)$\mathrm{P}$の到達点が$(10,\ 0)$となる確率を求めよ.また,$(6,\ 2)$となる確率を求めよ.
(2)$2$点$(10,\ 0)$,$(6,\ 2)$を通る直線$\ell$の方程式を求めよ.また,$\mathrm{P}$の到達点はすべて直線$\ell$上にあることを示せ.
(3)$(2)$で求めた直線$\ell$と原点との距離を求めよ.
(4)$\mathrm{P}$の到達点と原点との距離$d$が,$2 \sqrt{5}<d \leqq 5$となる確率を求めよ.
山形大学 国立 山形大学 2013年 第3問
$R,\ r$を正の実数とし,$2r<R \leqq 3r$とする.右図のように,原点 \\
$\mathrm{O}$を中心とする半径$R$の固定された円$S$の内部に点$\mathrm{O}^\prime$を中心と \\
する半径$r$の円$T$があり,円$T$は円$S$に接しながらすべらずに \\
転がるものとする.ただし,点$\mathrm{O}^\prime$は点$\mathrm{O}$のまわりを反時計まわり \\
に動くものとする.はじめに点$\mathrm{O}^\prime$は$(R-r,\ 0)$の位置にあり, \\
円$T$上の点$\mathrm{P}$は$(R,\ 0)$の位置にあるとする.$x$軸の正の部分と \\
動径$\mathrm{OO}^\prime$のなす角が$\theta$ラジアンのとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問に答えよ.
\img{72_2151_2013_1}{60}


(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{2r}{R} \cdot \frac{3}{2}\pi$において,$x(\theta)$が最小となるときの$\theta$の値を求めよ.
(3)$R=3,\ r=1$とする.$\theta>0$で点$\mathrm{P}$がはじめて$x$軸に到達したときの角$\theta_0$を求めよ.また,$0 \leqq \theta \leqq \theta_0$のとき,$y(\theta) \geqq 0$を示せ.
(4)$R=3,\ r=1$とする.$0 \leqq \theta \leqq \theta_0$における点$\mathrm{P}$の軌跡と$x$軸で囲まれた図形の面積を求めよ.
三重大学 国立 三重大学 2013年 第5問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに動くとする.$n$を正の整数として,$\mathrm{A}$から出発して$n$秒後に$\mathrm{A}$に戻る経路の数を$\alpha_n$,$\mathrm{A}$から出発して$n$秒後に$\mathrm{B}$に到達する経路の数を$\beta_n$とする.このとき,$\mathrm{A}$から出発して$n$秒後に$\mathrm{C}$に到達する経路の数も,$\mathrm{D}$に到達する経路の数も$\beta_n$となる.このことに注意して,以下の問いに答えよ.ただし$\alpha_0=1$,$\beta_0=0$とする.

(1)$\alpha_2,\ \beta_2,\ \alpha_2+3 \beta_2,\ \alpha_3,\ \beta_3,\ \alpha_3+3 \beta_3$を求めよ.
(2)$n \geqq 1$に対し$\alpha_n,\ \beta_n$を$\alpha_{n-1},\ \beta_{n-1}$で表せ.
(3)$c_n=\alpha_n-\beta_n$とおいて$c_n$の一般項を求めよ.
(4)$\alpha_n$の一般項を求めよ.
三重大学 国立 三重大学 2013年 第4問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに動くとする.$n$を正の整数として,$\mathrm{A}$から出発して$n$秒後に$\mathrm{A}$に戻る経路の数を$\alpha_n$,$\mathrm{A}$から出発して$n$秒後に$\mathrm{B}$に到達する経路の数を$\beta_n$とする.このとき,$\mathrm{A}$から出発して$n$秒後に$\mathrm{C}$に到達する経路の数も,$\mathrm{D}$に到達する経路の数も$\beta_n$となる.このことに注意して,以下の問いに答えよ.ただし$\alpha_0=1$,$\beta_0=0$とする.

(1)$\alpha_2,\ \beta_2,\ \alpha_2+3 \beta_2,\ \alpha_3,\ \beta_3,\ \alpha_3+3 \beta_3$を求めよ.
(2)$n \geqq 1$に対し$\alpha_n,\ \beta_n$を$\alpha_{n-1},\ \beta_{n-1}$で表せ.
(3)$c_n=\alpha_n-\beta_n$とおいて$c_n$の一般項を求めよ.
(4)$\alpha_n$の一般項を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第1問
次の$[ ]$にあてはまる適切な数値を記入せよ.

(1)数直線上を動く点$\mathrm{P}$が原点の位置にある.$2$個のさいころを同時に投げる試行を$\mathrm{T}$とし,試行$\mathrm{T}$の結果によって,$\mathrm{P}$は次の規則で動く.
(規則)$2$個のさいころの出た目の積が偶数ならば$+2$だけ移動し,奇数ならば$+1$だけ移動する.
試行$\mathrm{T}$を$n$回繰り返し行ったときの$\mathrm{P}$の座標を$x_n$とすると,$x_1=2$となる確率は$[ア]$であり,$x_3=3$かつ$x_4=5$となる確率は$[イ]$である.また,$\mathrm{P}$が座標$4$以上の点に初めて到達するまで試行$\mathrm{T}$を繰り返し行うとき,試行回数の期待値は$[ウ]$である.
(2)平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=|2 \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|=1$をみたしている.このとき,$|\overrightarrow{\mathrm{OB}}|=[エ]$である.また,実数$s,\ t$が条件$1 \leqq s+3t \leqq 3$,$s \geqq 0$,$t \geqq 0$をみたしながら動くとき,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$で定められた点$\mathrm{P}$の存在する範囲の面積は$[オ]$である.
島根県立大学 公立 島根県立大学 2013年 第2問
原点$\mathrm{O}$を起点に$\mathrm{XY}$座標軸上を次の法則に従って動く$2$つの点$\mathrm{A}$,$\mathrm{B}$がある.コインを投げて表が出れば点$\mathrm{A}$は$\mathrm{X}$軸上を$+1$だけ動き,点$\mathrm{B}$はその場にとどまる.一方,裏が出れば点$\mathrm{A}$はその場にとどまり,点$\mathrm{B}$は$\mathrm{Y}$軸上を$+1$だけ動く.次の問いに答えよ.

(1)$6$回コインを投げたとき,点$\mathrm{A}$が$(6,\ 0)$の位置に到達する確率を求めよ.
(2)$4$回コインを投げたとき,三角形$\mathrm{OAB}$の面積が$\displaystyle \frac{3}{2}$になる確率を求めよ.
(3)$6$回コインを投げたときの三角形$\mathrm{OAB}$の面積の期待値を求めよ.
岡山大学 国立 岡山大学 2012年 第2問
表の出る確率が$p$,裏の出る確率が$q$である硬貨を用意する.ここで$p,\ q$は正の定数で,$p+q=1$を満たすとする.座標平面における領域$D$を
\[ D= \{ (x,\ y) \ | \ 0 \leqq x \leqq 2,\ 0 \leqq y \leqq 2\} \]
とし,$D$上を動く点$\mathrm{Q}$を考える.$\mathrm{Q}$は点$(0,\ 0)$から出発し,硬貨を投げて表が出れば$x$軸方向に$+1$だけ進み,裏が出れば$y$軸方向に$+1$だけ進む.なお,この規則で$D$上を進めないときには,その回はその点にとどまるものとする.このとき以下の問いに答えよ.

(1)硬貨を$4$回投げて$\mathrm{Q}$が点$(2,\ 2)$に到達する確率$P_4$を求めよ.
(2)硬貨を$5$回投げて$5$回目に初めて$\mathrm{Q}$が点$(2,\ 2)$に到達する確率$P_5$を求めよ.
(3)$\displaystyle P_5 = \frac{1}{9}$のとき,$p$の値を求めよ.
千葉大学 国立 千葉大学 2012年 第9問
以下の問いに答えよ.

(1)関数$f(x)$は第2次導関数$f^{\prime\prime}(x)$が連続で,ある$a<b$に対して,$f^{\prime}(a)=f^{\prime}(b)=0$を満たしているものとする.このとき
\[ f(b)-f(a)=\int_a^b \left( \frac{a+b}{2}-x \right) f^{\prime\prime}(x) \, dx \]
が成り立つことを示せ.
(2)直線道路上における車の走行を考える.ある信号で停止していた車が,時刻0で発進後,距離$L$だけ離れた次の信号に時刻$T$で到達し再び停止した.この間にこの車の加速度の絶対値が$\displaystyle \frac{4L}{T^2}$以上である瞬間があることを示せ.
上智大学 私立 上智大学 2012年 第3問
座標平面上の点$(x,\ y)$のうち,$x,\ y$がともに整数である点を格子点とよぶ.いま,格子点の集合$A$を次のように定義する.
\[ A=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq 0,\ 16<x^2+y^2 \leqq 36,\ x \text{と} y \text{は整数} \} \]

(1)$A$の点は全部で$[ム]$個ある.
(2)格子点上を$1$秒間に右または上に$1$動く点$\mathrm{P}$を考える.$\mathrm{P}$は原点から出発し,$A$の点の$1$つに到達したら停止する.このとき,$\mathrm{P}$が到達できない$A$の点は全部で$[メ]$個ある.以下,$\mathrm{P}$が到達できる$A$の部分集合を$A_0$とする.
(3)$(2)$で考えた点$\mathrm{P}$が右に動く確率と上に動く確率をともに$\displaystyle \frac{1}{2}$とする.また,各格子点における$\mathrm{P}$の動きは,その点に至るまでの動き方と独立に決まるものとする.

(i) 原点からの経路の数が最も多い$A_0$の点は$\mathrm{Q}([モ],\ [ヤ])$であり,$\mathrm{P}$が$\mathrm{Q}$に到達する確率は$\displaystyle \frac{[ユ]}{[ヨ]}$である.
(ii) 原点からの経路の数が$\mathrm{Q}$の次に多い$A_0$の点は全部で$[ラ]$個あり,それらの点のいずれかで$\mathrm{P}$が停止する確率は$\displaystyle \frac{[リ]}{[ル]}$である.
(iii) $\mathrm{P}$が$A_0$の点のいずれかで停止するまでの時間の期待値は$\displaystyle \frac{[レ]}{[ロ]}$秒である.
中部大学 私立 中部大学 2012年 第2問
沖合から湾に面した海岸に向かって直線的にモーターボートを走らせている.モーターボートの速度は一定で時速$36 \; \mathrm{km}$である.モーターボートの進行方向の右前方に,湾から突き出した岬があり灯台が立っている.モーターボートの進行方向から灯台に向かって測った角度が$\theta (0^\circ<\theta<45^\circ)$である地点を$\mathrm{A}$とする.

(1)$\mathrm{A}$点から$11$分$40$秒後に角度が$90^\circ-\theta$である地点$\mathrm{B}$を通過した.$\mathrm{A}$と$\mathrm{B}$の距離を求めよ.
(2)モーターボートがさらに進んで,角度が$90^\circ$となる地点$\mathrm{C}$に到達した.$\mathrm{A}$から$\mathrm{C}$までかかった時間は$26$分$40$秒であった.灯台と$\mathrm{C}$点までの距離を求めよ.
(3)灯台と$\mathrm{A}$点の距離を求めよ.
スポンサーリンク

「到達」とは・・・

 まだこのタグの説明は執筆されていません。