タグ「到達」の検索結果

2ページ目:全36問中11問~20問を表示)
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
図$1$~$3$のような網目状の道があり,頂点$\mathrm{O}$を出発点とし,各頂点においてそれぞれ$\displaystyle \frac{1}{2}$の確率で上,または右斜め下に進む.ただし,右斜め下に道がない場合は必ず上に,上に道がない場合は必ず右斜め下に進み,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかに到達したら停止する.次の問いに答えよ.
(図は省略)

(1)図$1$において,各頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に到達する確率$P_{\mathrm{A}},\ P_{\mathrm{B}},\ P_{\mathrm{C}}$を求めよ.
(2)図$3$において,$\mathrm{C}_1,\ \mathrm{C}_2$をともに通過して$\mathrm{C}$に到達する確率を求めよ.
(3)図$3$において,$\mathrm{B}$に到達する確率を求めよ.
北海道大学 国立 北海道大学 2014年 第4問
図のような格子状の道路がある.$\mathrm{S}$地点を出発して,東または北に進んで$\mathrm{G}$地点に到達する経路を考える.ただし太い実線で描かれた区間$a$を通り抜けるのに$1$分,点線で描かれた区間$b$を通り抜けるのに$8$分,それ以外の各区間を通り抜けるのに$2$分かかるものとする.たとえば,図の矢印に沿った経路では$S$を出発し$\mathrm{G}$に到達するまでに$16$分かかる.
(図は省略)

(1)$a$を通り抜ける経路は何通りあるか.
(2)$a$を通り抜けずに$b$を通り抜ける経路は何通りあるか.
(3)すべての経路から任意に$1$つ選んだとき,$\mathrm{S}$地点から$\mathrm{G}$地点に到達するのにかかる時間の期待値を求めよ.
北海道大学 国立 北海道大学 2014年 第4問
図のような格子状の道路がある.$\mathrm{S}$地点を出発して,東または北に進んで$\mathrm{G}$地点に到達する経路を考える.ただし太い実線で描かれた区間$a$を通り抜けるのに$1$分,点線で描かれた区間$b$を通り抜けるのに$8$分,それ以外の各区間を通り抜けるのに$2$分かかるものとする.たとえば,図の矢印に沿った経路では$S$を出発し$\mathrm{G}$に到達するまでに$16$分かかる.
(図は省略)

(1)$a$を通り抜ける経路は何通りあるか.
(2)$a$を通り抜けずに$b$を通り抜ける経路は何通りあるか.
(3)すべての経路から任意に$1$つ選んだとき,$\mathrm{S}$地点から$\mathrm{G}$地点に到達するのにかかる時間の期待値を求めよ.
九州工業大学 国立 九州工業大学 2014年 第4問
点$\mathrm{P}$は次の$①$,$②$,$③$の規則に従って数直線上を動く.

\mon[$①$] 時刻$0$で,$\mathrm{P}$は整数座標点$0$から$10$のいずれかの位置$i (0 \leqq i \leqq 10)$にある.
\mon[$②$] 時刻$t (t=0,\ 1,\ 2,\ \cdots)$に位置$i (1 \leqq i \leqq 9)$にある$\mathrm{P}$は,$t+1$には確率$\displaystyle p \left( 0<p<\frac{1}{2} \right)$で位置$i+1$に,確率$1-p$で位置$i-1$に移動する.
\mon[$③$] 時刻$t$に位置$0$または$10$にある$\mathrm{P}$は,$t+1$にもその位置に留まる.

以下の問いに答えよ.

(1)$\mathrm{P}$が時刻$0$で位置$2$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
(2)$\mathrm{P}$が時刻$0$で位置$1$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
時刻$0$で位置$i$にある$\mathrm{P}$が,いずれかの時刻で位置$0$に到達する確率を$q_i$とする.ただし,$q_0=1$,$q_{10}=0$である.$1 \leqq i \leqq 9$のとき,$q_{i+1}$,$q_i$,$q_{i-1}$の間には$q_i=pq_{i+1}+(1-p)q_{i-1}$の関係が成り立つ.
(3)$q_{i+1}-q_i=[ ](q_i-q_{i-1})$である.空欄に入る適切な数または式を求めよ.
(4)$q_i$を$q_1$と$p$を用いて表せ.
(5)$q_1$を求め,$q_i$を$p$を用いて表せ.
日本女子大学 私立 日本女子大学 2014年 第3問
座標平面上を動く点$\mathrm{P}$が原点$(0,\ 0)$を出発して,$1$枚の硬貨を投げて表が出たら$x$軸方向の正の向きに$1$だけ進み,裏が出たら$y$軸方向の正の向きに$1$だけ進むとき,次の問いに答えよ.

(1)硬貨を$4$回投げたとき,$\mathrm{P}$が点$(2,\ 2)$に到達する確率を求めよ.
(2)硬貨を$9$回投げたとき,$\mathrm{P}$が点$(5,\ 4)$に到達する確率を求めよ.
(3)硬貨を$9$回投げたとき,$\mathrm{P}$が点$(2,\ 2)$を通らずに,点$(5,\ 4)$に到達する確率を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
正六角形$\mathrm{ABCDEF}$の頂点$\mathrm{D}$と正六角形の外部の点$\mathrm{G}$を線分で結んだ下のような図形がある.動点$\mathrm{P}$はこの図形の線分上を動き,点から点へ移動する.動点$\mathrm{P}$の隣接する点への移動には$1$秒間を要する.また,隣接する点が複数あるときは,等しい確率でどれか$1$つの点に移動するものとする.
(図は省略)

(1)動点$\mathrm{P}$が$\mathrm{A}$から出発して$4$秒後に$\mathrm{G}$にいる確率は$\displaystyle \frac{[$53$]}{[$54$][$55$]}$である.

(2)動点$\mathrm{P}$が$\mathrm{A}$から出発して$5$秒後に$\mathrm{D}$にいる確率は$\displaystyle \frac{[$56$][$57$]}{[$58$][$59$]}$である.

(3)動点$\mathrm{P}$が$\mathrm{A}$から出発して$\mathrm{D}$に到達した時点で移動を終了するとき,$2n+1$秒以内に移動を終了する確率は$\displaystyle \frac{{[$60$]}^n-{[$61$]}^n}{{[$62$]}^n}$である.ただし,$n$は自然数とする.
早稲田大学 私立 早稲田大学 2014年 第1問
下図のように,$1$辺の長さ$5$の正方形$\mathrm{ABCD}$が,$1$辺の長さ$1$の正方形からなる格子で区画されている.点$\mathrm{P}$は,$\mathrm{A}$から出発して次のルールに従って格子の上を動くものとする.$\mathrm{X}$と記したカードと,$\mathrm{Y}$と記したカード$5$枚ずつを,よくシャッフルして上から順にカードをめくる.$\mathrm{X}$と記したカードが出た場合は図の$\mathrm{X}$方向,$\mathrm{Y}$と記したカードが出た場合は図の$\mathrm{Y}$方向に$1$だけ動く.すべてのカードがめくり終わると,点$\mathrm{P}$は$\mathrm{C}$に到達していることになる.このとき,点$\mathrm{P}$の動いた経路と,線分$\mathrm{AB}$,線分$\mathrm{BC}$で囲まれる部分の面積を$S_1$,点$\mathrm{P}$の動いた経路と,線分$\mathrm{AD}$,線分$\mathrm{DC}$で囲まれる部分の面積を$S_2$とする.以下の問に答えよ.

(1)カードが$\mathrm{YXYXXYYYXX}$の順に出たとき
\[ S_1=[ア],\quad S_2=[イ] \]
である.
(2)$|S_1-S_2| \geqq 19$となる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(図は省略)
早稲田大学 私立 早稲田大学 2014年 第1問
下図のように,$1$辺の長さ$5$の正方形$\mathrm{ABCD}$が,$1$辺の長さ$1$の正方形からなる格子で区画されている.点$\mathrm{P}$は,$\mathrm{A}$から出発して次のルールに従って格子の上を動くものとする.$\mathrm{X}$と記したカードと,$\mathrm{Y}$と記したカード$5$枚ずつを,よくシャッフルして上から順にカードをめくる.$\mathrm{X}$と記したカードが出た場合は図の$\mathrm{X}$方向,$\mathrm{Y}$と記したカードが出た場合は図の$\mathrm{Y}$方向に$1$だけ動く.すべてのカードがめくり終わると,点$\mathrm{P}$は$\mathrm{C}$に到達していることになる.このとき,点$\mathrm{P}$の動いた経路と,線分$\mathrm{AB}$,線分$\mathrm{BC}$で囲まれる部分の面積を$S_1$,点$\mathrm{P}$の動いた経路と,線分$\mathrm{AD}$,線分$\mathrm{DC}$で囲まれる部分の面積を$S_2$とする.以下の問に答えよ.

(1)カードが$\mathrm{YXYXXYYYXX}$の順に出たとき
\[ S_1=[ア],\quad S_2=[イ] \]
である.
(2)$|S_1-S_2| \geqq 19$となる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
$r>0$とする.座標平面上の原点以外の点に対し,$2$種類の移動$\mathrm{A}$,$\mathrm{B}$を以下のように定める.

移動$\mathrm{A} \ \cdots \ (r \cos \theta,\ r \sin \theta)$にある点が$\displaystyle \left( r \cos \left( \theta+\frac{\pi}{6} \right),\ r \sin \left( \theta+\frac{\pi}{6} \right) \right)$に動く.

移動$\mathrm{B} \ \cdots \ (r \cos \theta,\ r \sin \theta)$にある点が$((r+1) \cos \theta,\ (r+1) \sin \theta)$に動く.

(図は省略)
動点$\mathrm{K}$は点$(1,\ 0)$を出発し,上記$\mathrm{A}$,$\mathrm{B}$いずれかの移動をくり返しながら座標平面上を動くとする.

(1)動点$\mathrm{K}$が$\mathrm{B}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{B}$の順に$4$回の移動を行ったとき,到達する点の座標は$([$49$] \sqrt{[$50$]},\ [$51$])$である.
(2)動点$\mathrm{K}$が$7$回の移動で点$(0,\ 5)$に到達する経路は$[$52$][$53$]$通りあり,そのうち点$\displaystyle \left( \frac{3}{2},\ \frac{3 \sqrt{3}}{2} \right)$を{\bf 通らない}ものは$[$54$][$55$]$通りある.

以下,$p$を$0 \leqq p \leqq 1$を満たす定数とする.動点$\mathrm{K}$は各回の移動において,確率$p$で移動$\mathrm{A}$を,確率$1-p$で移動$\mathrm{B}$を行うものとする.

(3)動点$\mathrm{K}$が$5$回の移動で到達する点の座標が$(0,\ 3)$である確率$P$を,$p$を用いた式で表しなさい.
(4)動点$\mathrm{K}$が$3$回の移動で到達する点の$y$座標を$a$とするとき,$a^2$の期待値$E$を$p$を用いた式で表しなさい.
京都府立大学 公立 京都府立大学 2014年 第3問
$1$個のサイコロを$1$回投げるごとに,出た目によって,点$\mathrm{P}$が座標平面上を,次の規則に従って動くものとする.

最初は原点にあり,偶数が出た場合は$x$軸の正の方向に出た目の数だけ進み,奇数が出た場合は$y$軸の正の方向に出た目の数だけ進む.

点$\mathrm{P}$の到達点の座標を$(x_0,\ y_0)$とする.以下の問いに答えよ.

(1)サイコロを$3$回投げたとき,$x_0=0$かつ$y_0=9$となる確率を求めよ.
(2)サイコロを$n$回投げたとき,$x_0=2n+2$かつ$y_0=0$となる確率を$n$を用いて表せ.
(3)サイコロを$2$回投げたとき,$\mathrm{P}$が$\displaystyle \frac{x_0}{2}<y_0<-\frac{{x_0}^3}{4}+8$の表す領域に存在する確率を求めよ.
(4)サイコロを$2$回投げたとき,$\mathrm{P}$が${x_0}^2+{y_0}^2-8x_0-2y_0+13>0$の表す領域に存在する確率を求めよ.
スポンサーリンク

「到達」とは・・・

 まだこのタグの説明は執筆されていません。