タグ「到着」の検索結果

1ページ目:全8問中1問~10問を表示)
京都府立大学 公立 京都府立大学 2016年 第2問
$a_1,\ a_2,\ c_1,\ c_2,\ c_3$を実数とする.$xyz$空間で,正四面体$\mathrm{OABC}$の座標が,$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a_1,\ a_2,\ 0)$,$\mathrm{B}(0,\ 6,\ 0)$,$\mathrm{C}(c_1,\ c_2,\ c_3)$であり,$a_1>0$,$c_3>0$であるとする.動点$\mathrm{P}$は,$\mathrm{O}$を出発して辺$\mathrm{OC}$上を一定の速さで動き,$2$秒かかって$\mathrm{C}$に到着する.動点$\mathrm{Q}$は,$\mathrm{P}$が出発してから最初の$1$秒間は$\mathrm{B}$に静止しており,その後,一定の速さで辺$\mathrm{BA}$上を動き,$1$秒かかって$\mathrm{A}$に到着する.このとき,以下の問いに答えよ.

(1)$a_1,\ a_2$の値を求めよ.
(2)$c_1,\ c_2,\ c_3$の値を求めよ.
(3)$\mathrm{P}$が出発してから$t$秒後($0 \leqq t \leqq 2$)における$|\overrightarrow{\mathrm{PQ|}}$の最小値を求めよ.
中央大学 私立 中央大学 2015年 第4問
表が出る確率が$\displaystyle q \ \left( q<\frac{1}{2} \right)$,裏が出る確率が$1-q$であるコインを使い,$xy$平面上の動点$P$を次の規則で動かす.
\begin{itemize}
動点$P$は原点から出発する.
コインを投げて表が出ると,$x$軸の正の方向に$1$移動する.
コインを投げて裏が出ると,$y$軸の正の方向に$1$移動する.
\end{itemize}
このコインを$4$回投げたとき,動点$P$が点$\mathrm{A}(2,\ 2)$に到着する確率は$\displaystyle \frac{8}{27}$である.このとき,以下の設問に答えよ.なお,解答の数値は分数および累乗のままでよい.

(1)このコインを$1$回投げたとき,表が出る確率$q$を求めよ.
(2)このコインを$8$回投げたとき,
動点$P$が,途中で点$\mathrm{A}(2,\ 2)$を通らずに,点$\mathrm{B}(4,\ 4)$に到着する確率
を求めよ.
埼玉大学 国立 埼玉大学 2014年 第3問
南北に平行に走る$5$本の同じ長さの線分が等間隔で並んでいる.西から順に,各線分の南の端点は,$A_0$,$B_0$,$C_0$,$D_0$,$E_0$であり,北の端点は,$A$,$B$,$C$,$D$,$E$である.各線分を$4$等分する点を,南から順に,$1$番地,$2$番地,$3$番地と呼ぶ.隣り合う線分の同じ番地同士を結ぶ線分を橋と呼ぶ.人は南の端点のいずれかをスタート地点として北へ向かって歩き始め,橋に出会わなければそのまま北へ向かって歩き続け,橋に出会えば橋で結ばれた隣の線分に渡ってその線分を北へ向かって歩く.必要ならこれを繰り返し,人は最終的に北の端点のゴール地点に到着する.$D$に家があるとする.$5$つの各スタート地点から家に到着することができるそれぞれの確率を,以下の場合に,求めなさい.

(1)同様に確からしく,$1$番地に$1$本の橋を置く場合
(2)同様に確からしく,たがいに独立に,$1$番地に$1$本,$2$番地に$1$本,$3$番地に$1$本の橋を置く場合
千葉工業大学 私立 千葉工業大学 2013年 第1問
次の各問に答えよ.

(1)$\mathrm{A}$地点から$15 \, \mathrm{km}$離れた$\mathrm{B}$地点まで行くのに,初めは時速$4 \, \mathrm{km}$で歩き,途中から時速$6 \, \mathrm{km}$で歩くことにする.$\mathrm{A}$地点を出発後,$3$時間以内に$\mathrm{B}$地点に到着するためには,時速$4 \, \mathrm{km}$で歩ける距離は最大で$[ア] \, \mathrm{km}$である.
(2)半径$2 \sqrt{6}$の円に内接する正三角形の$1$辺の長さは$[イ] \sqrt{[ウ]}$である.
(3)中心が$(-2,\ 3)$で,$y$軸に接する円の方程式は$x^2+y^2+[エ]x-[オ]y+[カ]=0$である.
(4)$3^n$の一の位の数字が$1$になる正の整数$n$の最小値は$[キ]$であり,$3^{102}$の一の位の数字は$[ク]$である.
(5)数直線上の集合$A=\{x \;|\; 2<x<9 \}$,$B=\{x \;|\; k<x<k+2 \}$(ただし,$k$は定数)において,$A \cap B$が空集合となるような$k$の値の範囲は$k \leqq [ケ]$または$[コ] \leqq k$である.
(6)白玉$3$個,赤玉$5$個の計$8$個の玉が入った箱の中から同時に$4$個の玉を取り出すとき,白玉も赤玉もともに取り出される確率は$\displaystyle \frac{[サシ]}{[スセ]}$である.
(7)方程式$\displaystyle 9^x=\frac{3}{27^x}$の解は$\displaystyle x=\frac{[ソ]}{[タ]}$である.
(8)関数$f(x)=-2x^3-6x^2+9$の極大値は$[チ]$,極小値は$[ツ]$である.
昭和大学 私立 昭和大学 2012年 第5問
硬貨を投げて座標平面上の点を移動させるゲームをする.ゲームの規則は,硬貨を投げて表が出たら$x$軸の正の方向に$1$だけ進み,裏が出たら$y$軸の正の方向に$1$だけ進むものとする.点は原点から出発する.以下の各問に答えよ.

(1)点$(3,\ 3)$に到着する確率を求めよ.
(2)点$(1,\ 1)$を通って点$(3,\ 3)$に到着する確率を求めよ.
(3)点$(1,\ 1)$を通るが,点$(2,\ 2)$を通らずに点$(3,\ 3)$に到着する確率を求めよ.
兵庫県立大学 公立 兵庫県立大学 2012年 第3問
互いに友人である$\mathrm{A}$,$\mathrm{B}$はかつて,$10$年後の$1$月$1$日に,スリーアイランド国の空港で再会することを約束した.いよいよ今日が約束の$1$月$1$日である.$2$人は午後,自分達の住む国からスリーアイランド国の空港に各々到着する.ところが,$3$つの島から成るこの国には,各島に$1$つずつ,計$3$つの空港があり,出発の際,$2$人とも行き先をこれら$3$つの島の中から等確率で選んだため,降り立った空港で$2$人が再会できるとは限らない.再会できない場合は,$\mathrm{A}$も$\mathrm{B}$も,再会できるまで,現在自分がいる島以外の$2$島の$1$つを等確率で選び翌日その島へ移動することを繰り返す.ただし,$3$島の間の移動は各島間に毎日朝$1$便だけある飛行機によるしかなく,しかも,乗り継ぎが悪いため,島の間の移動は$1$日に$1$度しかできない.次の問に答えなさい.

(1)$1$月$1$日に$\mathrm{A}$,$\mathrm{B}$が再会する確率を求めなさい.
(2)$1$月$2$日にようやく$\mathrm{A}$,$\mathrm{B}$が再会する確率を求めなさい.
(3)$1$月$4$日の午後までに$\mathrm{A}$,$\mathrm{B}$が再会できる確率を求めなさい.
(4)$1$月$6$日の午後になっても$\mathrm{A}$,$\mathrm{B}$が再会できていない確率を求めなさい.
立教大学 私立 立教大学 2011年 第1問
次の空欄アに$①$~$④$のいずれかを記入せよ.また空欄イ~スに当てはまる数または式を記入せよ.

(1)実数$x,\ y$に対して,$x^2+y^2 \leqq 1$は「$-1 \leqq x \leqq 1$かつ$-1 \leqq y \leqq 1$」であるための何条件かを,$①$「必要条件」,$②$「十分条件」,$③$「必要十分条件」,$④$「必要条件でも十分条件でもない」のうちから選択すると,$[ア]$となる.
(2)$3x^2-xy-2y^2-x+6y+k$が,$x,\ y$の整数係数の$1$次式の積に因数分解されるとき,$k=[イ]$である.
(3)$3$つの数$\log_2 x$,$\log_2 10$,$\log_2 20$がこの順で等差数列であるとき,$x=[ウ]$である.
(4)$\displaystyle \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots +\frac{1}{100 \cdot 101}=\frac{[エ]}{[オ]}$である.
(5)座標平面上の曲線$y=x^3+ax^2+bx$上の点$(2,\ 4)$における接線が$x$軸に平行であるとき,$a=[カ]$,$b=[キ]$である.
(6)自宅から$2000 \; \mathrm{m}$離れている駅まで,はじめに毎分$80 \; \mathrm{m}$で歩き,途中から毎分$170 \; \mathrm{m}$で走るものとする.出発してから$16$分以内に駅に到着するには,歩きはじめてから$[ク]$分以内に走り出さなければならない.
(7)点$\mathrm{A}(2,\ 3)$,点$\mathrm{B}(p,\ q)$と原点$\mathrm{O}$がつくる三角形$\mathrm{OAB}$について,$\angle \mathrm{OAB}=90^\circ$のとき,$p,\ q$の満たす条件は$p \neq 2$かつ$p=[ケ]$である.
(8)実数$x,\ y,\ a,\ b$が条件$x^2+y^2=2$,および$a^2+b^2=3$を満たすとき,$ax+by$の最大値は$[コ]$で,最小値は$[サ]$である.
(9)$\displaystyle x=\frac{\sqrt{6}-\sqrt{10}i}{3}$とし,$x$と共役な複素数を$y$とするとき,$x^3+y^3=[シ]$となる.ただし,$i$は虚数単位とする.
\mon $\displaystyle \sin x+\sin y=\frac{1}{3}$,$\displaystyle \cos x-\cos y=\frac{1}{2}$のとき,$\cos (x+y)$の値は$[ス]$である.
東北大学 国立 東北大学 2010年 第3問
数直線上を動く点Pがある.裏表の出る確率が等しい硬貨を2枚投げて,2枚とも表が出たらPは正の向きに1だけ移動し,2枚とも裏が出たらPは負の方向に1だけ移動し,それ以外のときはその位置にとどまるものとする.Pが原点Oを出発点として,このような試行を$n$回繰り返して到着した位置を$S_n$とする.以下の問いに答えよ.

(1)$S_2 = -1$となる確率を求めよ.
(2)$S_3 = 1$となる確率を求めよ.
(3)試行を$n$回繰り返して出た表の総数を$i$とするとき,$S_n$を求めよ.
(4)$k$を整数とするとき,$S_n = k$となる確率を求めよ.
スポンサーリンク

「到着」とは・・・

 まだこのタグの説明は執筆されていません。