タグ「利用」の検索結果

5ページ目:全72問中41問~50問を表示)
南山大学 私立 南山大学 2013年 第2問
平面上に曲線$C_1:y=|x^2-2|$と円$C_2$がある.$C_1$と$C_2$は,点$\mathrm{A}(a,\ a^2-2)$で共通の接線$\ell$を持ち,点$\mathrm{B}(0,\ 2)$でも共通の接線を持つ.ただし,$a>2$とする.

(1)$C_1$を図示せよ.
(2)$C_1$と$\ell$が$\mathrm{A}$で接することを利用して,$\ell$の方程式を$a$を用いて表せ.
(3)$\mathrm{A}$を通り$\ell$に直交する直線の方程式を$a$を用いて表せ.
(4)$C_2$の方程式を求めよ.
松山大学 私立 松山大学 2013年 第3問
$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(5,\ 0)$,$\mathrm{B}(5,\ 4)$,$\mathrm{C}(0,\ 4)$を頂点とする長方形$\mathrm{OABC}$の辺$\mathrm{AB}$,$\mathrm{BC}$上にそれぞれ点$\mathrm{P}(5,\ m)$,$\mathrm{Q}(n,\ 4)$がある.また,$\angle \mathrm{POQ}={45}^\circ$,$\angle \mathrm{AOP}=\theta$とする.

(1)$\tan \theta$を$m$で表すと$\displaystyle \tan \theta=\frac{m}{[ア]}$である.$\tan (\theta+{45}^\circ)$を$n$で表すと$\displaystyle \tan (\theta+{45}^\circ)=\frac{[イ]}{n}$である.
(2)$(1)$の結果を利用して,$m$を$n$で表すと,$\displaystyle m=\frac{[ウエ]}{n+4}-[オ]$である.また,$n$の値の範囲は$\displaystyle \frac{[カ]}{[キ]} \leqq n \leqq [ク]$である.
(3)$\triangle \mathrm{OPQ}$の面積を$S$とするとき,$S$を$n$で表すと


$\displaystyle S=[ケコ]-\frac{[サシ]n}{n+4}+\frac{[ス]}{2}n$

\quad $\displaystyle =\frac{[セ]}{2}(n+4)-\frac{[ソタ](n+4)-[チツ]}{n+4}$

\quad $\displaystyle =\frac{[セ]}{2}(n+4)+\frac{[チツ]}{n+4}-[ソタ]$となる.

したがって,$S$の最小値は$[テト](\sqrt{[ナ]}-1)$となり,そのとき,$n=[ニ](\sqrt{[ヌ]}-1)$である.
愛知県立大学 公立 愛知県立大学 2013年 第4問
$f=(x \quad y) \left( \begin{array}{cc}
a & b \\
c & a
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)$とする.このとき,以下の問いに答えよ.ただし,$a$,$b$,$c$,$x$,$y$は実数とする.

(1)次の等式を満たす$d,\ e$を$a,\ b,\ c$を用いて表せ.
\[ \left( \begin{array}{cc}
a & b \\
c & a
\end{array} \right)=\left( \begin{array}{cc}
a & d \\
d & a
\end{array} \right)+\left( \begin{array}{cc}
0 & e \\
-e & 0
\end{array} \right) \]
(2)$b=c=0$のとき,$x=y=0$を除くすべての$x,\ y$に対して$f>0$となる$a$の条件を求めよ.
(3)$P=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.このとき,次の等式を満たす$z$,$w$,$\theta$を求めよ.ただし,$b \neq 0$とする.
\[ P^{-1} \left( \begin{array}{cc}
a & b \\
b & a
\end{array} \right) P=\left( \begin{array}{cc}
z & 0 \\
0 & w
\end{array} \right) \]
(4)(1)と(3)の結果を利用して,$x=y=0$を除くすべての$x,\ y$に対して$f>0$となる$a$の条件を$b,\ c$を用いて求めよ.
宮城大学 公立 宮城大学 2013年 第4問
次の問いに答えなさい.ただし,以下の角$\theta$は鋭角とし,$\tan \theta=t$とおく.

(1)$\tan 2\theta$を$t$を用いて表せ.また,特に$\tan 2\theta=\sqrt{8}$の場合に$t$の値を求めよ.
(2)加法定理を利用し,$\tan 3\theta$を$t$を用いて表せ.
(3)$\tan 3\theta=1$のとき,$t$の値を求めよ.
九州大学 国立 九州大学 2012年 第3問
100人の団体がある区間を列車で移動する.このとき,乗車券が7枚入った480円のセットAと,乗車券が3枚入った220円のセットBを購入して,利用することにした.以下の問いに答えよ.

(1)$x$が0以上の整数であるとき,次のことを示せ.\\
\quad $\displaystyle \frac{1}{3} (100-7x)$は,$x$を3で割ったときの余りが1の場合に整数であり,\\
\quad それ以外の場合は整数ではない.
(2)購入した乗車券は,余らせずすべて利用するものとする.このとき,セットAとセットBの購入の仕方をすべて挙げよ.
(3)購入した乗車券は余ってもよいものとする.このとき,Aのみ,あるいはBのみを購入する場合も含めて,購入金額が最も低くなるのは,A,Bをそれぞれ何
セットずつ購入するときか.またそのときの購入金額はいくらか.
大分大学 国立 大分大学 2012年 第4問
$\displaystyle I_1=\int_0^3 \sqrt{x^2+9} \, dx, I_2=\int_0^3 \frac{dx}{\sqrt{x^2+9}}$とする.

(1)次の等式がすべての実数$x$について成り立つように,定数$a,\ b$の値を定めなさい.
\[ \frac{x^2}{\sqrt{x^2+9}}=a\sqrt{x^2+9}+\frac{b}{\sqrt{x^2+9}} \]
(2)$I_1$において部分積分することにより,$I_1$を$I_2$で表しなさい.
(3)$\log (x+\sqrt{x^2+9})$の導関数を利用して,$I_2$を求めなさい.
(4)曲線$x^2-y^2=-9$と直線$y=3\sqrt{2}$で囲まれた部分の面積$S$を求めなさい.
学習院大学 私立 学習院大学 2012年 第3問
等式
\[ \frac{1}{x^3-x}=\frac{a}{x-1}+\frac{b}{x}+\frac{c}{x+1} \]
が恒等式となるように定数$a,\ b,\ c$の値を定めよ.また,それを利用して
\[ \sum_{n=2}^{100} \frac{1}{n^3-n} \]
を求めよ.
中央大学 私立 中央大学 2012年 第3問
$\mathrm{A}$市から$\mathrm{B}$市へ移動するには電車による方法とバスによる方法の$2$つがある.$\mathrm{A}$市から$\mathrm{B}$市までの電車の運賃は$420$円である.また,バスの運賃は$480$円であるが,バス会社は$25$人まで乗車できる団体券も発行している.団体券は前売り制であり,前日までに$1$万円で購入しなければならず,払い戻しはできない.このとき,以下の問いに答えよ.

(1)$25$人以上$50$人以下のグループが$\mathrm{A}$市から$\mathrm{B}$市まで移動する.全員が同じ手段でそろって移動し,グループの人数は前日までに確定しているとする.このとき電車を使って移動した方が運賃が安くなるのはグループの人数が何人以上,何人以下のときか.
(2)前問で求めた,電車を利用した方が運賃が安くなる最大人数より$1$人だけ人数が多いグループが$\mathrm{A}$市から$\mathrm{B}$市まで移動する.ただし,このうち$1$人は当日移動を取り止める可能性があり,その確率は$p$である.このとき,前日にバスの前売り券を買っておくとすると,当日移動した人の$1$人あたりの運賃の期待値はいくらか.また,これが電車賃より安くなるのは$p$がどのようなときか.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ヒ]$までに当てはまる数字$0$~$9$を求めよ.ただし,分数は既約分数として表しなさい.

(1)$a$を実数とするとき,方程式
\[ |x|-|x^2-4|+|x+6|=a \]
を考える.この方程式の実数解が$2$個であるための条件は
\[ a<[ア],\quad [イ]<a<[ウ][エ] \]
であり,実数解を持たないための条件は
\[ a>[オ][カ] \]
である.また,次の不等式
\[ |x|-|x^2-4|+|x+6|>2 \]
には,正の整数解が$[キ]$個,負の整数解が$[ク]$個ある.
(2)空間内に点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,それぞれの大きさと内積が
\[ \begin{array}{l}
|\overrightarrow{a}|=9,\quad |\overrightarrow{b}|=12,\quad |\overrightarrow{c}|=\sqrt{42}, \\ \\
\overrightarrow{a} \cdot \overrightarrow{b}=72,\quad \overrightarrow{a} \cdot \overrightarrow{c}=57,\quad \overrightarrow{b} \cdot \overrightarrow{c}=48
\end{array} \]
であるとする.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角は$\displaystyle \frac{1}{[ケ]} \pi$であり,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[コ][サ]}{[シ]}$である.ベクトル
\[ \overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直交するのは$\displaystyle s=\frac{[ス]}{[セ]}$,$\displaystyle t=\frac{[ソ]}{[タ]}$のときである.したがって,四面体$\mathrm{OABC}$の体積は$[チ][ツ]$である.
(3)三角関数についての等式
\[ [テ] \cos^3 \theta-[ト] \cos \theta-\cos 3\theta=0 \]
を利用して,$t$に関する$3$次方程式
\[ [テ]t^3-[ト]t-\frac{\sqrt{2}}{2}=0 \]
を解いたとき,$\displaystyle \cos \frac{3}{4} \pi$が解の$1$つであることがわかる.したがって,この方程式の残りの$2$つの解は
\[ \cos \frac{[ナ]}{12} \pi=\frac{\sqrt{[ニ]}+\sqrt{[ヌ]}}{[ネ]} \]

\[ \cos \frac{[ノ]}{12} \pi=\frac{\sqrt{[ニ]}-\sqrt{[ヌ]}}{[ネ]} \]
となる.これより,
\[ \tan \frac{[ナ]}{12} \pi=[ハ]-\sqrt{[ヒ]} \]
となる.
大阪工業大学 私立 大阪工業大学 2012年 第3問
次の問いに答えよ.

(1)関数$f(t)=2t^3-3t^2+1 (0 \leqq t \leqq 1)$の最小値を求めよ.
(2)$(1)$を利用して,$\displaystyle 0<x<\frac{\pi}{2}$のとき,$2 \cos^3 x-3 \cos^2 x+1>0$となることを示せ.
(3)関数$g(x)=\tan x+2 \sin x-3x$を微分せよ.
(4)$\displaystyle 0<x<\frac{\pi}{2}$のとき,$\tan x+2 \sin x>3x$となることを示せ.
スポンサーリンク

「利用」とは・・・

 まだこのタグの説明は執筆されていません。