タグ「初項」の検索結果

22ページ目:全248問中211問~220問を表示)
神戸薬科大学 私立 神戸薬科大学 2011年 第2問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)$\displaystyle S=\sum_{n=1}^{18} (-1)^n \log_{10}(n+1)(n+2)$の値を計算すると$S=[ ]$である.
(2)$a>0,\ b>0,\ a+b=1$のとき,$\displaystyle \left( 2+\frac{1}{a} \right) \left( 2+\frac{1}{b} \right)$の最小値は$[ ]$である.
(3)$2$次方程式$x^2+ax+a^2-4=0$が正の解と負の解を$1$つずつ持つときの定数$a$の値の範囲は,$[ ]<a<[ ]$である.
(4)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$S_n=2a_n+2n-5$で与えられている.このとき,$a_1=[ ]$である.また,$a_{n+1}$を$a_n$を用いて表すと$a_{n+1}=[ ]$である.
関西学院大学 私立 関西学院大学 2011年 第2問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$k$は実数とする.$xy$平面において直線
\[ y=-x+1 \cdots\cdots① \]
が放物線
\[ y=-x^2+k \cdots\cdots② \]
に接するとする.このとき$k$の値は$[ ]$である.また,放物線$②$と直線$①$が共有点をもたないような$k$の値の範囲は$[$*$]$である.放物線$②$上の点$\mathrm{P}(a,\ -a^2+k)$から直線$①$までの距離$d$は$d=[ ]$で表される.$k$が$[$*$]$の範囲にあるとき,放物線$②$上の点$\mathrm{P}(a,\ -a^2+k)$から直線$①$までの距離$d$が最小になるのは$a=[ ]$のときで,そのときの距離$d$の値は$[ ]$である.
(2)数列$\{a_n\}$において初項$a_1$から第$n$項$a_n$までの和を$S_n$とする.このとき
\[ S_n=2a_n+5n-12 \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立っているとする.数列の初項$a_1$は$S_1$と一致することを使うと,$a_1$の値は$[ ]$であることがわかる.第$n$項$a_n$を$a_{n-1}$で表すと$a_n=[ ] (n=2,\ 3,\ 4,\ \cdots)$となるので,$a_n,\ S_n$をそれぞれ$n$の式で表すと$a_n=[ ]$,$S_n=[ ]$となる.
早稲田大学 私立 早稲田大学 2011年 第1問
以下の問に答えよ.

(1)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする.$\log_{10}(S_n+1)=n$が成り立っているとき,一般項は$a_n=[ア]\cdot[イ]^{n-[ウ]}$となる.
(2)方程式$\log_{x-3}(x^3-8x^2+20x-17)=3$の解は$x=[エ]$である.
県立広島大学 公立 県立広島大学 2011年 第2問
初項$a$,公比$r$の等比数列$\{a_n\}$において
\[ a_1<a_2,\quad a_1+a_2+a_3=42,\quad a_1a_2a_3=512 \]
とする.ただし,$a,\ r$は実数である.

(1)初項$a$と公比$r$を求めよ.
(2)$S_n=a_1+a_2+\cdots+a_n \ (n=1,\ 2,\ 3,\ \cdots)$とするとき,$S_n>10^5$を満たす最小の$n$を求めよ.ただし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.
九州歯科大学 公立 九州歯科大学 2011年 第3問
初項を$a_1=16$とする数列$\{a_n\}$の第$1$項から第$n$項までの和$S_n$が$S_n=2n^2-6n+20$で与えられるとき,次の問いに答えよ.

(1)$n \geqq 2$に対して,$a_n$を$n$を用いて表せ.
(2)数列$\{b_n\}$を$b_1=a_1$,$b_2=a_2+a_3$,$b_3=a_4+a_5+a_6$,$b_4=a_7+a_8+a_9+a_{10}$,$\cdots$と定義する.このとき,$b_n=a_{k+1}+a_{k+2}+\cdots +a_{k+n}$をみたす$k$を$n$を用いて表せ.
(3)数列$\{b_n\}$の第$1$項から第$n$項までの和を$T_n$とするとき,極限値$\displaystyle A=\lim_{n \to \infty}\frac{T_n}{n^4}$と極限値$\displaystyle B=\lim_{n \to \infty}\frac{T_n-An^4}{n^3}$の値を求めよ.
(4)$\displaystyle C=\sum_{n=1}^{24}(T_n-An^4-Bn^3)$の値を求めよ.ただし,$A$と$B$は(3)で求めた極限値である.
岡山大学 国立 岡山大学 2010年 第2問
自然数$m,\ n$に対して,自然数$m \diamond n$を次のように定める.

\setlength\unitlength{1truecm}
(図は省略)

例えば,$1 \diamond 1=4,\ 1 \diamond 2=6,\ 2 \diamond 1=9,\ 4 \diamond 2=33,\ 5 \diamond 3=56,\ 1 \diamond 6=14,\ 6 \diamond 1=49$である.

(1)数列$8 \diamond 1,\ 8 \diamond 2,\ 8 \diamond 3,\ \cdots$の初項$8 \diamond 1$から第25項$8 \diamond 25$までの和を求めよ.
(2)$m \diamond n=474$を満たす自然数$m,\ n$の組をすべて求めよ.
金沢大学 国立 金沢大学 2010年 第3問
行列$A=\left( \begin{array}{cc}
0 & -r \\
-r & 0
\end{array} \right) \ (r>0)$と座標平面上の点P$_0(-1,\ 2)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$,$\cdots$,P$_n(x_n,\ y_n)$,$\cdots$は,式
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right) = A^n \left( \begin{array}{c}
-1 \\
2
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすものとする.次の問いに答えよ.

(1)$A^{2k},\ A^{2k+1} \ (k=1,\ 2,\ 3,\ \cdots)$を求めよ.
(2)$x_n,\ y_n \ (n=1,\ 2,\ 3,\ \cdots)$を求めよ.
(3)線分P$_{n-1}$P$_n$の長さを$d_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.数列$\{d_n\}$の初項$d_1$と一般項$d_n$を求めよ.また,無限級数$\displaystyle \sum_{n=1}^{\infty} d_n$が収束し,その和が3となるような$r$の値を求めよ.
島根大学 国立 島根大学 2010年 第1問
数列$\{a_n\}$を初項3,公比3の等比数列とし,数列$\{b_n\}$を初項11,公差8の等差数列とする.$\{a_n\}$と$\{b_n\}$に共通に含まれる項を小さいものから順に並べて得られる数列$\{c_n\}$の一般項を求めよ.
香川大学 国立 香川大学 2010年 第2問
数列$\{a_n\}$を初項1,公差$\displaystyle \frac{2}{7}$の等差数列とするとき,次の問に答えよ.

(1)数列$\{a_n\}$の一般項$a_n$および初項から第$n$項までの和$\displaystyle \sum_{k=1}^n a_k$を$n$を用いて表せ.
(2)実数$x$に対して,$m \leqq x$をみたす最大の整数$m$を$[\,x\,]$で表す.数列$\{b_n\}$を$b_n=[\,a_n\,]$で定めるとき,$b_7,\ b_{14},\ b_{15}$を求めよ.
(3)(2)で定めた数列$\{b_n\}$について,$b_{100}$および$\displaystyle \sum_{k=1}^{100} b_k$を求めよ.
香川大学 国立 香川大学 2010年 第2問
数列$\{a_n\}$を初項1,公差$\displaystyle \frac{2}{7}$の等差数列とするとき,次の問に答えよ.

(1)数列$\{a_n\}$の一般項$a_n$および初項から第$n$項までの和$\displaystyle \sum_{k=1}^n a_k$を$n$を用いて表せ.
(2)実数$x$に対して,$m \leqq x$をみたす最大の整数$m$を$[\,x\,]$で表す.数列$\{b_n\}$を$b_n=[\,a_n\,]$で定めるとき,$b_7,\ b_{14},\ b_{15}$を求めよ.
(3)(2)で定めた数列$\{b_n\}$について,$b_{100}$および$\displaystyle \sum_{k=1}^{100} b_k$を求めよ.
スポンサーリンク

「初項」とは・・・

 まだこのタグの説明は執筆されていません。