タグ「初項」の検索結果

15ページ目:全248問中141問~150問を表示)
早稲田大学 私立 早稲田大学 2013年 第2問
次のような群にわかれた数列がある.
\[ (1),\ (2,\ 4),\ (5,\ 7,\ 9),\ (10,\ 12,\ 14,\ 16),\ \cdots \]
(第$2$群の初項は第$1$群の末項に$1$を加えたものとし,第$3$群の初項は第$2$群の末項に$1$を加えたものとする.以下同様に第$n$群の初項は第$n-1$群の末項に$1$を加えたものとする.第$n$群は公差$2$,項数$n$の等差数列である.)

このとき次の問に答えよ.

(1)第$n$群に含まれる項の総和は$[カ]n^3+[キ]n^2+[ク]n$である.
(2)第$1$群から第$n$群に含まれるすべての項の総和は
\[ \frac{1}{[ケ]} \left( [コ]n^4+[サ]n^3+[シ]n^2+[ス]n \right) \]
である.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)等差数列$\{a_n\}$において,初項から第$10$項までの和が$-8$,初項から第$21$項までの和が$14$である.この数列の初項$a_1$は$[ア]$で,公差は$[イ]$である.
(2)$2 \log_3 4+\log_9 5-\log_3 8=\log_3 x$の解は$x=[ウ]$である.

(3)$\displaystyle x=\frac{1}{\sqrt{7}-\sqrt{5}},\ y=\frac{1}{\sqrt{7}+\sqrt{5}}$のとき,$x^3+y^3$の値は$[エ]$である.

(4)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$となる自然数の組$(x,\ y)$で$x \geqq y$を満たすものをすべてあげると$(x,\ y)=[オ]$である.
(5)正の数$k$と角$\theta$に対して,$\sin \theta,\ \cos \theta$が$2$次方程式$5x^2-kx+2=0$の解となるような$k$の値は$[カ]$である.
(6)三角形$\mathrm{ABC}$において,$\displaystyle \frac{\sin A}{\sqrt{2}}=\frac{\sin B}{2}=\frac{\sin C}{1+\sqrt{3}}$であるとき,$\cos C$の値は$[キ]$である.
(7)整式$P(x)$を$2x^2+9x-5$で割ると余りが$3x+5$であり,$x-2$で割ると余りが$-3$であるとき,$P(x)$を$x^2+3x-10$で割ると,余りは$[ク]$である.
(8)座標空間内に$4$点$\mathrm{A}(-1,\ 2,\ 1)$,$\mathrm{B}(-1,\ -1,\ 4)$,$\mathrm{C}(1,\ -1,\ 1)$,$\mathrm{D}(x,\ y,\ z)$がある.これら$4$点が同一平面上にあり,かつこれらを頂点とする四角形がひし形であるのは,$(x,\ y,\ z)=[ケ]$のときである.
九州歯科大学 公立 九州歯科大学 2013年 第1問
次の問いに答えよ.

(1)頂点間の距離が$24$であり,焦点が$(20,\ 0)$と$(-20,\ 0)$である双曲線の方程式を求めよ.
(2)初項を$a_1=4$とする数列$\{a_n\}$と初項を$b_1=1$とする数列$\{b_n\}$に対して,$c_n=\sqrt{a_nb_n}$,$\displaystyle d_n=\sqrt{\displaystyle\frac{a_n}{b_n}}$とおく.ただし,$a_n>0$,$b_n>0$とする.数列$\{c_n\}$が公差$2$の等差数列となり,数列$\{d_n\}$が公比$3$の等比数列となるとき,$a_5$と$b_5$の値を求めよ.
(3)関数$f(x)=Ax^5+Bx^4+Cx^3+Dx^2+Ex+F$が
\[ f(-x)=-f(x),\quad \lim_{x \to \infty}\frac{f(x)}{x^3}=6,\quad \int_0^1 f(x) \, dx=\frac{1}{2} \]
をみたすとき,定数$A,\ B,\ C,\ D,\ E,\ F$の値を求めよ.
宮城大学 公立 宮城大学 2013年 第2問
次の空欄$[タ]$から$[ト]$にあてはまる数や式を書きなさい.

次のような整数の数列$\{a_n\}$がある.
$1,\ 1,\ 2,\ 1,\ 1,\ 2,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ 4,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ 4,\ 5,\ 4,\ 3,\ 2,\ 1,\ \cdots,\ 1,\ 2,\ 3,\ \cdots,\ n-2,\ n-1,\ n,\ n-1,\ \cdots,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ \cdots$
ここで,$a_1=1$だけからなる群を第$1$群,$a_2=1,\ a_3=2,\ a_4=1$からなる群を第$2$群と呼ぶことにする.一般に,$1,\ 2,\ 3,\ 4,\ \cdots,\ k-1,\ k,\ k-1,\ \cdots,\ 3,\ 2,\ 1$からなる群を第$k$群と呼ぶことにする.
このとき,以下の問いに答えなさい.
(1)第$n$群の項数を$n$を用いて表せば$[タ]$個となる.
(2)第$n$群に属する項すべての整数の和を$n$を用いて表せば$[チ]$となる.
(3)整数$7$が,数列$\{a_n\}$の初項から「第$n$群に含まれる最後の項」までの間に現れる回数を$n$を用いて表せば$[ツ]$回となる.ただし,$n$は$7$以上の自然数とする.
(4)数列$\{a_n\}$の第$364$項は第$[テ]$群に属し,その第$[テ]$群の先頭から$[ト]$番目の項である.
北九州市立大学 公立 北九州市立大学 2013年 第1問
初項$a_1=0$,漸化式$a_{n+1}=a_n+2n-15$で与えられる数列$\{a_n\}$を考える.また,数列$\{a_n\}$の第$1$項から第$n$項までの和を$S_n$とする.以下の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$a_n>0$を満たす最小の$n$を求めよ.
(3)数列$\{S_n\}$の一般項を求めよ.
(4)$S_n>a_n$を満たす最小の$n$を求めよ.
(5)数列$\{T_n\}$の一般項を$T_n=S_n-n \cdot a_n$によって定める.$T_n$が,ある数列$\{b_n\}$の第$1$項から第$n$項までの和となるとする.その数列$\{b_n\}$の一般項を求めよ.
秋田県立大学 公立 秋田県立大学 2013年 第4問
初項$6$,公差$3$の等差数列を$\{a_n\}$とし,$\{b_n\}$,$\{c_n\}$,$\{d_n\}$を一般項が次の式で定められる数列とする.

$\displaystyle b_n=\sum_{k=1}^n a_k \quad (n=1,\ 2,\ 3,\ \cdots)$
$\displaystyle c_n=\frac{1}{b_n} \quad (n=1,\ 2,\ 3,\ \cdots)$
$\displaystyle d_n=\sum_{k=1}^n c_k \quad (n=1,\ 2,\ 3,\ \cdots)$

このとき,以下の設問に答えよ.$(1)$は解答のみでよく,$(2)$~$(4)$は解答とともに導出過程も記述せよ.

(1)$a_n$を$n$を用いて表せ.
(2)$b_n$を$n$を用いて表せ.
(3)$c_n$は実数$s,\ t$を用いて$\displaystyle c_n=\frac{s}{n}+\frac{t}{n+3}$と表せる.$s,\ t$を求めよ.
(4)$\displaystyle \lim_{n \to \infty} d_n$を求めよ.
北九州市立大学 公立 北九州市立大学 2013年 第2問
以下の問いの空欄$[サ]$~$[ト]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$i$を虚数単位とする.$x=1+i$および$y=1-i$のとき,$x^2+5xy+4y^2$の値は実部が$[サ]$,虚部が$[シ]$となる.
(2)$2$点$(-1,\ 0)$,$(3,\ 2)$を通る半径が$\sqrt{10}$の円は,中心の座標が$([ス],\ [セ])$のものと$([ソ],\ [タ])$のものがある.
(3)$\alpha$と$\beta$が鋭角で,$\displaystyle \sin \alpha=\frac{1}{3}$,$\displaystyle \sin \beta=\frac{3}{5}$のとき,$\sin (\alpha+\beta)$の値は$[チ]$である.
(4)方程式$\displaystyle \log_2 x \cdot \log_2 \frac{x}{2}=12$の解は,$x=[ツ]$と$x=[テ]$である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n \cdot 2^{n+1}$で表されるとき,この数列の一般項$a_n$は$[ト]$となる.
防衛医科大学校 国立 防衛医科大学校 2012年 第1問
以下の問に答えよ.

(1)以下の条件 (ア),(イ) を満たす正の整数は,小さい順に並べると,等差数列になる.この数列の初項と公差を求めよ.

\mon[(ア)] $13$で割ると余りが$2$となる.
\mon[(イ)] $11$で割ると商が奇数,余りが$3$となる.

(2)正六角形$\mathrm{ABCDEF}$の辺$\mathrm{CD}$の中点を$\mathrm{M}$,$\mathrm{CE}$と$\mathrm{AM}$の交点を$\mathrm{N}$とする.このとき,$\triangle \mathrm{NEA}$の面積は$\triangle \mathrm{NCM}$の面積の何倍となるか.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n}\sqrt[n]{\frac{(4n)!}{(3n)!}}$を求めよ.
熊本大学 国立 熊本大学 2012年 第1問
$n \geqq 4$とする.$(n-4)$個の1と4個の$-1$からなる数列$a_k \ (k=1,\ 2,\ \cdots,\ n)$を考える.以下の問いに答えよ.

(1)このような数列$\{a_k\}$は何通りあるか求めよ.
(2)数列$\{a_k\}$の初項から第$k$項までの積を$b_k=a_1a_2 \cdots a_k \ (k=1,\ 2,\ \cdots,\ n)$とおく.$b_1+b_2+\cdots +b_n$がとり得る値の最大値および最小値を求めよ.
(3)$b_1+b_2+\cdots +b_n$の最大値および最小値を与える数列$\{a_k\}$はそれぞれ何通りあるか求めよ.
岩手大学 国立 岩手大学 2012年 第3問
初項が$a_1=-35$である数列$\{a_n\}$の階差数列を$\{b_n\}$とする.すなわち,
\[ b_n=a_{n+1}-a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.$\{b_n\}$が等差数列で,その初項は$b_1=-19$,公差は4であるとき,次の問いに答えよ.

(1)自然数$n$に対し,$b_n$を$n$で表せ.
(2)自然数$n$に対し,$a_n$を$n$で表せ.
(3)数列$\{a_n\}$の初項から第24項までの和を求めよ.
スポンサーリンク

「初項」とは・・・

 まだこのタグの説明は執筆されていません。