タグ「初項」の検索結果

14ページ目:全248問中131問~140問を表示)
東京薬科大学 私立 東京薬科大学 2013年 第1問
次の$[ ]$に適当な数,式を入れよ.ただし,$*$については,$+,\ -$の$1$つが入る.

(1)$2$次方程式$x^2-4x+2=0$の$2$つの解を$\alpha,\ \beta (\alpha>\beta)$とすると,
\[ \alpha^2+\beta^2=[アイ],\quad \alpha^2-\beta^2=[ウ] \sqrt{[エ]},\quad \alpha^3+\beta^3=[オカ] \]
である.
(2)$\displaystyle \left( \frac{5}{2} \right)^{100}$の整数部分の桁数は$[キク]$である.ただし,$\log_{10}2=0.3010$とせよ.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする.$\displaystyle S_n=\frac{3}{2}n^2-\frac{5}{2}n$であるとき,$a_n=[$*$ケ]n+[$*$コ]$である.
(4)$1$枚の硬貨を$5$回投げるとき,表が$3$回出る確率は$\displaystyle \frac{[サ]}{[シス]}$であり,$3$度目の表が$5$回目の試行で出る確率は$\displaystyle \frac{[セ]}{[ソタ]}$である.
神戸薬科大学 私立 神戸薬科大学 2013年 第5問
数列$\{a_n\}$は$a_1=3$,$a_{n+1}=a_n+4$で定められている.一般項を求めると$a_n=[ ]$である.また,数列$\{b_n\}$は$b_1=1$,$b_{n+1}=2b_n+8$で定められている.一般項を求めると$b_n=[ ]$である.$c_n=a_n+b_n$とおくとき数列$\{c_n\}$の初項から第$n$項までの和$S_n$を求めると$S_n=[ ]$である.
九州産業大学 私立 九州産業大学 2013年 第4問
数列$\{a_n\}$の初項$a_1$から第$n$項$a_n$までの和を$S_n$とするとき,
\[ S_n=\frac{1}{3}-(n+2)a_n \]
を満たすとする.

(1)$a_1$の値は$[ア]$である.
(2)$\displaystyle \frac{a_{n+1}}{a_n}$を$n$の式で表すと$\displaystyle \frac{a_{n+1}}{a_n}=[イ]$である.
(3)$\displaystyle \frac{a_n}{a_1}$を$n$の式で表すと$\displaystyle \frac{a_n}{a_1}=[ウ]$である.
(4)数列$\{a_n\}$の一般項は$a_n=[エ]$である.
(5)$\displaystyle \sum_{n=1}^{10} \frac{1}{a_n}$の値は$[オ]$である.
大阪工業大学 私立 大阪工業大学 2013年 第3問
次の空所を埋めよ.

数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n-2 (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$\{a_n\}$の一般項を次のようにして求めよう.
まず,$a_2=[ア]$であり,さらに,$a_{n+2}=3a_{n+1}-2$より
\[ a_{n+2}-a_{n+1}=[イ] \times (a_{n+1}-a_n) \]
が成り立つ.したがって,$b_n=a_{n+1}-a_n$とおくと,数列$\{b_n\}$は初項$[ウ]$,公比$[エ]$の等比数列になり,一般項は$b_n=[オ]$である.
よって,数列$\{a_n\}$の一般項は$a_n=[カ]$である.
広島工業大学 私立 広島工業大学 2013年 第2問
数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$S_n=4a_n-n$を満たしている.

(1)$a_1$を求めよ.
(2)$a_{n+1}$を$a_n$を用いて表せ.
(3)$b_n=a_n+c$とおくとき,$\{b_n\}$が等比数列になるように定数$c$の値を決めよ.
(4)$\{a_n\}$の一般項を求めよ.
玉川大学 私立 玉川大学 2013年 第1問
次の$[ ]$を埋めよ.

(1)初項$1$,公比$2$の等比数列の初項から第$10$項までの和は$\kakkofour{ア}{イ}{ウ}{エ}$である.
(2)直線$x+2y+3=0$に垂直で点$(1,\ 3)$を通る直線の傾きを$m$,$y$切片を$b$とするとき
\[ m=[オ],\quad b=[カ] \]
である.
(3)$2$次方程式$3x^2-(3 \sqrt{2}+2)x+3 \sqrt{2}-1=0$の解は
\[ x=[キ],\quad \frac{[ク] \sqrt{[ケ]}-[コ]}{[サ]} \]
である.
(4)不等式$|2x-5| \leqq 4$の解は
\[ \frac{[シ]}{[ス]} \leqq x \leqq \frac{[セ]}{[ソ]} \]
である.
(5)曲線$y=x^3$の$x=2$における接線は,$y=[タチ]x-[ツテ]$である.
(6)$\overrightarrow{a}=(2,\ 0)$,$\overrightarrow{b}=(1,\ 1)$のとき,
\[ |\overrightarrow{a}|=[ト],\quad |\overrightarrow{b}|=\sqrt{[ナ]},\quad \overrightarrow{a} \cdot \overrightarrow{b}=[ニ] \]
である.
早稲田大学 私立 早稲田大学 2013年 第2問
次のような群にわかれた数列がある.
\[ (1),\ (2,\ 4),\ (5,\ 7,\ 9),\ (10,\ 12,\ 14,\ 16),\ \cdots \]
(第$2$群の初項は第$1$群の末項に$1$を加えたものとし,第$3$群の初項は第$2$群の末項に$1$を加えたものとする.以下同様に第$n$群の初項は第$n-1$群の末項に$1$を加えたものとする.第$n$群は公差$2$,項数$n$の等差数列である.)

このとき次の問に答えよ.

(1)第$n$群に含まれる項の総和は$[カ]n^3+[キ]n^2+[ク]n$である.
(2)第$1$群から第$n$群に含まれるすべての項の総和は
\[ \frac{1}{[ケ]} \left( [コ]n^4+[サ]n^3+[シ]n^2+[ス]n \right) \]
である.
早稲田大学 私立 早稲田大学 2013年 第6問
数列
\[ \{a_n\}:\frac{1}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{1}{5},\ \frac{2}{5},\ \frac{3}{5},\ \frac{4}{5},\ \frac{1}{6},\ \frac{2}{6},\ \frac{3}{6},\ \frac{4}{6},\ \frac{5}{6},\ \cdots \]
がある.この数列$\{a_n\}$を
\[ \frac{1}{2} \;\biggl|\; \frac{1}{3},\ \frac{2}{3} \;\biggl|\; \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4} \;\biggl|\; \frac{1}{5},\ \frac{2}{5},\ \frac{3}{5},\ \frac{4}{5} \;\biggl|\; \frac{1}{6},\ \frac{2}{6},\ \frac{3}{6},\ \frac{4}{6},\ \frac{5}{6} \;\biggl|\; \cdots \]
のように群に分けると,第$k$群は,初項$\displaystyle \frac{1}{k+1}$,末項$\displaystyle \frac{k}{k+1}$,公差$\displaystyle \frac{1}{k+1}$の等差数列である.

(1)数列$\{a_n\}$の各項を既約分数で表したとき,分子が$1$となる分数が$4$つ連続して初めて現れるのは,$\displaystyle \frac{1}{[ノ]}$からの$4$つの項である.
(2)数列$\{a_n\}$の第$1$群の初項から,第$m$群の末項までの和は,
\[ \frac{1}{2}+\frac{1}{3}+\cdots +\frac{m}{m+1}=\frac{[ハ]}{[ヒ]}m^{\mkakko{フ}}+\frac{[ヘ]}{[ホ]}m \]
である.
早稲田大学 私立 早稲田大学 2013年 第1問
次の問に答えよ.

(1)数列$\{a_n\}$を初項$2$,公比$2$の等比数列,数列$\{b_n\}$を初項$2$,公差$2$の等差数列とし,$c_n=a_nb_n$とする.

(i) $a_{10}=[ア]$である.
(ii) $b_n=a_{10}$のとき,$n=[イ]$である.
(iii) 数列$\{c_n\}$の初項から第$n$項までの和を$S_n$とすると,
\[ S_n=4 \left\{ 2^n([ウ])+1 \right\} \]
である.

(2)$x$についての$3$次方程式
\[ x^3+(a-3)x^2+(-2a+b+3)x+a-b-15=0 \]
の$1$つの解が$3+\sqrt{3}i$であるとき,実数の定数$a,\ b$の値は$a=[エ]$,$b=[オ]$で,$3+\sqrt{3}i$以外の解は,$[カ]$と$[キ]$である.
早稲田大学 私立 早稲田大学 2013年 第1問
一般項が$a_k=2k-1$である数列に,次のような規則で縦棒で仕切りを入れて区分けする.その規則とは,区分けされた$n$番目の部分(これを第$n$群と呼ぶことにする)が$2n-1$個の項からなるように仕切るものである.
\[ 1 \;\biggl|\; 3,\ 5,\ 7 \;\biggl|\; 9,\ 11,\ 13,\ 15,\ 17 \;\biggl|\; 19,\ 21,\ 23,\ 25,\ 27,\ 29,\ 31 \;\biggl|\; 33,\ 35,\ 37,\ \cdots \]
このとき,例えば,第$3$群は,$9,\ 11,\ 13,\ 15,\ 17$の$5$つの項からなるので,第$3$群の初項は$9$,末項は$17$,中央の項は$3$項目の$13$である.また,第$3$群の総和は$9+11+13+15+17=65$であり,$15$は第$3$群の第$4$項である.次の問に答えよ.

(1)第$n$群の初項を$n$の式で表せ.
(2)第$n$群の中央の項を$n$の式で表せ.
(3)第$n$群の項の総和$S(n)$を$n$の式で表せ.
(4)第$1$群から第$n$群までの中央の項の総和を$n$の式で表せ.
(5)$2013$は第何群の第何項か.
スポンサーリンク

「初項」とは・・・

 まだこのタグの説明は執筆されていません。