タグ「初項」の検索結果

11ページ目:全248問中101問~110問を表示)
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2014年 第1問
以下の設問の$[ ]$に答えなさい.

(1)$a$を$1$より大きな実数,$e$を自然対数の底とし,$f(x)=a^x \log_e a$とする.このとき,曲線$y=f(x)$,直線$x=10$,$x$軸および$y$軸で囲まれた部分の面積$S$を$a$を用いた式で表すと,$S=[$1$]$となる.
(2)$\displaystyle \sin x-\cos x=\frac{1}{2}$(ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$)のとき,$\sin^4 x-\cos^4 x$の値を求めると$[$2$]$となる.
(3)数列$\{a_n\}$を初項$2$,公差$7$の等差数列,数列$\{b_n\}$を初項$1$,公比$2$の等比数列とし,数列$\{c_n\}$の第$n$項を$c_n=a_nb_n (n=1,\ 2,\ 3,\ \cdots)$と定義する.数列$\{c_n\}$の初項から第$n$項までの和$S_n$を$n$を用いた式で表すと,$S_n=[$3$]$となる.また,$S_n=133132$となるのは$n=[$4$]$のときである.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
以下の問いに答えなさい.

(1)下図のような口の半径が$10 \, \mathrm{cm}$,高さが$30 \, \mathrm{cm}$の口の開いた逆円すい形の容器を,口が水平になるように置き,水を入れた.水面の面積が$36 \pi \, \mathrm{cm}^2$であるとき,水の体積は$[$1$][$2$][$3$] \pi \, \mathrm{cm}^3$であり,容器の内面で水に接していない部分の面積は,水に接している部分の面積の$\displaystyle \frac{[$4$][$5$]}{[$6$]}$倍である.
(図は省略)
(2)次の数列を考える.
\[ 1,\ \frac{1}{3},\ \frac{1}{3},\ \frac{1}{3},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{27},\ \cdots \]
この数列の第$670$項は$\displaystyle \frac{1}{[$7$][$8$][$9$]}$,初項から第$2182$項までの和は
\[ \frac{\kakkofour{$10$}{$11$}{$12$}{$13$}}{[$14$][$15$][$16$]} \]
である.
(3)次の連立方程式を満たす実数の組$(x,\ y)$をすべて求めなさい.
\[ \left\{ \begin{array}{l}
-9x^2+4x+3y^2=0 \\
3xy-5y=0
\end{array} \right. \]
北里大学 私立 北里大学 2014年 第2問
次の文中の$[ア]$~$[フ]$にあてはまる最も適切な数を答えなさい.

(1)数列$\{a_n\}$は$a_1=1$,$a_{n+1}=3a_n-n (n=1,\ 2,\ 3,\ \cdots)$で定義される.ここで,$b_n=a_{n+1}-a_n$とおくと,$b_1=[ア]$,$b_2=[イ]$であり,数列$\{b_n\}$の一般項は,
\[ b_n=\frac{[ウ]}{[エ]} \left\{ ([オ])^{n-1}+[カ] \right\} \]
となる.初項$b_1$から第$n$項$b_n$までの和$S_n$は,
\[ S_n=\frac{[キ]}{[ク]} \left\{ ([ケ])^n+[コ]n+[サ] \right\} \]
である.また,数列$\{a_n\}$の一般項は,
\[ a_n=\frac{[シ]}{[ス]} \left\{ ([セ])^{n-1}+[ソ]n+[タ] \right\} \]
と表される.
(2)奇数の列を
\[ 1 \;|\; 3,\ 5,\ 7 \;|\; 9,\ 11,\ 13,\ 15,\ 17 \;|\; 19,\ 21,\ 23,\ 25,\ 27,\ 29,\ 31 \;|\; \cdots \]
のような群にわける.つまり,第$1$群は$1$のみからなる.このとき,第$n$群に含まれる項の数は$[チ]n+[ツ]$であるので,第$1$群から第$n-1$群までの項の数は,
\[ [テ]n^2+[ト]n+[ナ] \]
である.したがって,第$n$群の最初の項の値は,
\[ [ニ]n^2+[ヌ]n+[ネ] \]
である.また,第$n$群に含まれる数の総和は,
\[ [ノ] n^3+[ハ]n^2+[ヒ]n+[フ] \]
である.
昭和薬科大学 私立 昭和薬科大学 2014年 第1問
次の問いに答えよ.

(1)${2}^{314}$は$[ア][イ]$桁の整数で,最高位の数は$[ウ]$である.ただし,最高位の数とは,例えば$5279$の場合は$5$を指す.また,$\log_{10}2$を$0.3010$,$\log_{10}3$を$0.4771$とする.
(2)図のような格子状の道路網がある.点$\mathrm{A}$から点$\mathrm{B}$まで最短経路で行く方法は$[エ][オ][カ]$通りある.また,点$\mathrm{A}$から線分$\mathrm{PQ}$を通らないで点$\mathrm{B}$まで最短経路で行く方法は$[キ][ク]$通りある.
(図は省略)
(3)$\mathrm{AB}=5$,$\mathrm{AC}=6$,$\mathrm{BC}=7$である$\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle \frac{[ケ] \sqrt{[コ]}}{[サ]}$である.
(4)公比が負の数である等比数列がある.初項から第$4$項までの和は$\displaystyle \frac{75}{16}$,第$3$項と第$4$項の和は$\displaystyle \frac{27}{16}$である.この等比数列の初項は$[シ][ス]$で,公比は$\displaystyle \frac{[セ][ソ]}{[タ]}$である.
(5)条件$1 \leqq a \leqq 5$,$0 \leqq b<a$,$|c| \leqq b$を満たす整数の組$(a,\ b,\ c)$は全部で$[チ][ツ]$通りある.
(6)連立不等式
\[ |2x^2-8x+6| \leqq \frac{9}{8},\qquad x^3-6x^2+12x-8 \geqq 0 \]
の解は$\displaystyle \frac{[テ]+\sqrt{[ト]}}{[ナ]} \leqq x \leqq \frac{[ニ][ヌ]}{[ネ]}$である.
北里大学 私立 北里大学 2014年 第2問
$\{a_n\}$を次の条件によって定められる数列とする.
\[ a_1=1,\quad \frac{1}{a_{n+1}}-\frac{1}{a_n}=n+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする.

(1)$a_{30}$の値は$[エ]$であり,$S_{40}$の値は$[オ]$である.
(2)$\displaystyle b_n=\frac{S_n}{2}+\frac{2}{S_n}$とし,数列$\{b_n\}$の初項から第$n$項までの和を$T_n$とする.このとき,$T_{50}$の値は$[カ]$である.
西南学院大学 私立 西南学院大学 2014年 第3問
数列$\{\beta_n\}$の階差数列が,初項$3$,公差$2$の等差数列であるとし,$\beta_1=1$とする.$2$次方程式
\[ x^2-a_nx+b_n=0 \]
の$2$つの解が$\beta_n,\ \beta_{n+1}$となるとき,次の問に答えよ.

(1)$b_2=[ナニ]$である.
(2)$a_9=[ヌネノ]$である.
(3)$x^2-a_nx+b_n$の最小値を$M_n$とすると,数列$\{M_n\}$の階差数列は,初項$[ハヒ]$,公差$[フヘ]$の等差数列となる.
大阪府立大学 公立 大阪府立大学 2014年 第6問
数列$\{a_n\}$の初項$a_1$から第$n$項$a_n$までの和$S_n$が
\[ S_n=2a_n+n^2-n \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.

(1)$a_1$と$a_2$を求めよ.
(2)$a_{n+1}-2a_n$を$n$の式で表せ.
(3)$b_n=a_{n+1}-a_n-2 (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は等比数列となることを示し,初項$b_1$と公比を求めよ.
(4)$a_n$を$n$の式で表せ.
宮城大学 公立 宮城大学 2014年 第2問
次の空欄$[ア]$から$[ク]$にあてはまる数や式を書きなさい.

初項$2$,公差$3$の等差数列$\{a_n\}$と,初項$1$,公差$4$の等差数列$\{b_n\}$がある.このとき,それぞれの一般項を$n$を用いて表せば,
\[ a_n=[ア],\quad b_n=[イ] \]
である.
また,数列$\{a_n\}$と数列$\{b_n\}$に共通に含まれる項を順に並べると,次のような数列$\{c_n\}$が得られる.
\[ c_1=5,\quad c_2=[ウ],\quad c_3=[エ],\quad \cdots \]
したがって,数列$\{c_n\}$の一般項を$n$を用いて表せば,
\[ c_n=[オ] \]
となる.
また,数列$\{c_n\}$の第$p$項を$c_p$とするとき,数列$\{a_n\}$と数列$\{b_n\}$はともに項$c_p$を含む.よってそれぞれの項番号を自然数$p$を用いて表せば,数列$\{a_n\}$の場合は,
\[ n=[カ] \]
であり,数列$\{b_n\}$の場合は,
\[ n=[キ] \]
となる.よって,これらの項番号の差の絶対値を自然数$p$を用いて表せば,$[ク]$となる.
奈良県立医科大学 公立 奈良県立医科大学 2014年 第9問
数列$a_n=(50-2n)2^n (n=0,\ 1,\ 2,\ \cdots)$の初項から第$n$項までの和を$S_n$とする.$S_n<0$となる最小の$n$と,そのときの$S_n$の値を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第1問
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とし,$S_n$が次の式で与えられるとする.
\[ S_n=a_n+2n^2-n-1 \]
また,数列$\{b_n\}$は次の条件によって与えられるとする.
\[ b_1=-2,\quad b_{n+1}=2b_n+a_n \]
以下の問題に答えよ.

(1)$n$が$2$以上の自然数のとき,$S_{n-1}$を$n$の式で表せ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)数列$\{b_n\}$の一般項を求めよ.
(4)$n$が$2$以上の自然数のとき,不等式$b_n>0$を証明せよ.
(5)数列$\{b_n\}$の初項から第$n$項までの和を$T_n$とする.$T_n$を$n$の式で表せ.
スポンサーリンク

「初項」とは・・・

 まだこのタグの説明は執筆されていません。