タグ「分数」の検索結果

93ページ目:全4648問中921問~930問を表示)
岩手大学 国立 岩手大学 2015年 第1問
次の問いに答えよ.

(1)$2$次方程式$3x^2+7x+5=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha}$の値を求めよ.
(2)方程式$\displaystyle \log_9 (x+4)=\log_3 (2x-7)+\log_5 \frac{1}{5 \sqrt{5}}$を解け.
(3)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$の大きさをそれぞれ$A,\ B$で表すとき,$\displaystyle \cos A=\frac{3}{5}$,$\displaystyle \cos B=\frac{2}{3}$であるとし,さらに辺$\mathrm{AB}$の長さは$\displaystyle \frac{38}{5}$であるとする.このとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
秋田大学 国立 秋田大学 2015年 第3問
$F(x),\ f(x),\ g(x)$は関数である.次の問いに答えよ.

(1)$0<a \leqq \pi$とし,$\displaystyle F(x)=\int_a^x \cos (t-a) g(\sin (t-a)) \, dt-f(x)$とする.

(i) $f(x)$は$\displaystyle (1-x) \int_0^x f(t) \, dt=x \int_x^1 f(t) \, dt$と$f(1)=1$を満たすとする.$f(x)$を求めよ.
(ii) $f(x)$は$(ⅰ)$で求めた関数である.$g(x)$は,$x<y$ならば$g(x)>g(y)$を満たし,$\displaystyle g \left( \frac{1}{\sqrt{2}} \right)=0$であるとする.このとき,開区間$(a,\ 2a)$で$F(x)$が極大値をただ$1$つもつように,$a$の値の範囲を定めよ.

(2)$a \geqq 0$とし,$\displaystyle F(x)=\int_a^{x+a} \cos (t-a) g(\sin (t-a)) \, dt-f(x)$とする.$f(x)>0$,$f^\prime(x)>0$であり,$g(x)=xf(x)$であるとする.$\displaystyle 0 \leqq x \leqq \frac{\pi}{4}$のとき$F(x) \leqq 0$となることを示せ.
秋田大学 国立 秋田大学 2015年 第2問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
秋田大学 国立 秋田大学 2015年 第3問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
秋田大学 国立 秋田大学 2015年 第2問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
岩手大学 国立 岩手大学 2015年 第1問
必答問題$(1)$,$(2)$の$2$問と,選択問題$(3)$,$(4)$のいずれか$1$問を選択し,計$3$問を解答せよ.

(1)(必答)$2$つのベクトル$\overrightarrow{a}=(-2,\ 1,\ 2)$,$\overrightarrow{b}=(-1,\ 1,\ 0)$について,$\overrightarrow{p}=\overrightarrow{a}+t \overrightarrow{b}$とする.$t$がすべての実数値をとって変化するとき,$|\overrightarrow{p}|$の最小値を求めよ.
(2)(必答)$3$直線$4x-3y+3=0$,$x-4y+4=0$,$3x+y-14=0$で作られる三角形の面積を求めよ.
(3)(選択)複素数$\displaystyle z=2 \left( \cos \frac{11}{12} \pi+i \sin \frac{11}{12} \pi \right)$のとき,$z^2$,$z^{-3}$および${|z-\displaystyle\frac{1|{z}}}^2$を求めよ.ただし,$i$は虚数単位とする.
(4)(選択)$2$つの行列$A=\left( \begin{array}{cc}
4 & 2 \\
1 & 3
\end{array} \right)$,$B=\left( \begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array} \right)$について,$B^{-1}AB$,$(B^{-1}AB)^n$および$A^n$を求めよ.ただし,$n$は正の整数とする.
岩手大学 国立 岩手大学 2015年 第6問
次の問いに答えよ.

(1)$\sin 3\theta$を$\sin \theta$で表せ.
(2)$\cos 3\theta$を$\cos \theta$で表せ.
(3)関数$y=-8 \sin^3 \theta+6 \sin \theta-3 \cos \theta+4 \cos^3 \theta+1$の$\displaystyle \frac{\pi}{2} \leqq \theta \leqq \pi$における最大値と最小値を求めよ.
岩手大学 国立 岩手大学 2015年 第6問
関数$f(x)=\cos^3 x \sin x$について,次の問いに答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲における$f(x)$の最大値を求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲において,曲線$y=f(x)$と曲線$y=\sin 2x$で囲まれた部分の面積を求めよ.
大阪教育大学 国立 大阪教育大学 2015年 第1問
以下の問に答えよ.

(1)実数$x,\ y$が$x+y=1$を満たすとき,不等式
\[ x^2+y^2 \geqq \frac{1}{2} \]
が成り立つことを証明せよ.また,等号が成り立つのはどのようなときか.
(2)実数$x,\ y,\ z$が$x+y+z=1$を満たすとき,不等式
\[ x^2+y^2+z^2 \geqq \frac{1}{3} \]
が成り立つことを証明せよ.また,等号が成り立つのはどのようなときか.
(3)$n$は自然数とする.実数$x_1,\ x_2,\ \cdots,\ x_n$が$x_1+x_2+\cdots +x_n=1$を満たすとき,不等式
\[ {x_1}^2+{x_2}^2+\cdots +{x_n}^2 \geqq \frac{1}{n} \]
が成り立つことを証明せよ.また,等号が成り立つのはどのようなときか.
大阪教育大学 国立 大阪教育大学 2015年 第4問
関数$\displaystyle f(x)=\frac{\log x}{\sqrt{x}}$について,以下の問に答えよ.ただし,$\log x$は自然対数を表すものとする.

(1)$f(x)$が極値をとる$x$の値はただ$1$つであることを示し,そのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$c$とするとき,$y=f(x)$のグラフと$x$軸と直線$x=c$で囲まれた部分を$D$で表す.$D$の面積を求めよ.
(3)$(2)$で定めた$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。