タグ「分数」の検索結果

81ページ目:全4648問中801問~810問を表示)
徳島大学 国立 徳島大学 2015年 第3問
$c$を実数とする.数列$\{a_n\}$は次を満たす.
\[ a_1=1,\quad a_{n+1}=\frac{{a_n}^2+cn-4}{3n} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_2,\ a_3$を$c$を用いて表せ.
(2)$a_1+a_3 \leqq 2a_2$のとき,不等式$a_n \geqq 3 (n=3,\ 4,\ 5,\ \cdots)$を示せ.
(3)$a_1+a_3=2a_2$のとき,極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第1問
以下の問に答えよ.

(1)$a^5-12a^4+36a^3-81a+1,\ a^2-6a$が共に有理数となるような無理数$a$を求めよ.
(2)$a_1=1$,$a_2=e$,$a_{n+2}=a_n^{-2}a_{n+1}^3 (n=1,\ 2,\ 3,\ \cdots)$という条件で決まる数列$\{a_n\}$の第$n$項を求めよ.ただし,$e$は自然対数の底とする.
(3)$f(4)=k_1$,$f^\prime(4)=k_2$を満たすどんな関数$f(x)$についても,
\[ \lim_{x \to 0} \frac{4f((x+2)^2)-(x+2)^2f(4)}{x}=\alpha k_1+\beta k_2 \]
となる.このとき,定数$\alpha,\ \beta$はそれぞれいくらか.
防衛医科大学校 国立 防衛医科大学校 2015年 第2問
スイッチを押すと,$0$から$n$までの整数が$1$つ表示される機械がある.表示される数字を$X$とすると,$X=k$となる確率$P(X=k)=C \alpha^k (k=0,\ 1,\ 2,\ \cdots,\ n)$である.ただし,$C$は定数,$0<\alpha<1$である.

(1)$P(X=k)$を$\alpha$と$k$で表せ($k=0,\ 1,\ 2,\ \cdots,\ n$).
(2)$P(X<k)>1-\alpha^k$であることを示せ($k=1,\ 2,\ 3,\ \cdots,\ n+1$).
(3)確率$p$で$1$点もらえ,確率$1-p$で得点がもらえない試行を考える($0<p<1$).この試行を独立に$m$回行ったとき,$l$点($0 \leqq l \leqq m$)もらえる確率を$Q_{m,l}(p)$と表す.このとき,$m,\ l$を一定とし,$p$を変数とみなして以下の問に答えよ.

(i) $y=\log Q_{m,l}(p)$はどのような変化をするか.$p$を横軸,$y$を縦軸とする$y$のグラフの概形を描け.ただし,$\log$は自然対数である.
(ii) $Q_{m,l}(p)$を最大にする$p$を求めよ.

(4)$\displaystyle \alpha=\frac{1}{2}$とする.このとき,$Q_{2m,m}(P(X<k))$を最大にする$k (k=1,\ 2,\ 3,\ \cdots,\ n)$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第4問
関数$\displaystyle f_1(x)=\frac{2}{1+e^x}$,$\displaystyle \log f_2(x)=\frac{1}{2}\int_0^x f_1(t) \, dt$,$\displaystyle \log f_3(x)=-\frac{1}{2}\int_0^x f_2(t) \, dt$,$\displaystyle \log f_4(x)=\frac{1}{2}\int_0^x f_3(t) \, dt$,$\cdots$,
\[ \log f_k(x)=\frac{{(-1)}^k}{2}\int_0^x f_{k-1}(t) \, dt \quad (k=2,\ 3,\ 4,\ \cdots) \]
とする.ただし,$\log$は自然対数である.また,
\[ g_k(x)=f_k(x) \times \frac{x \sin x}{4-\cos^2 x} \quad (k=1,\ 2,\ 3,\ \cdots) \]
とする.さらに,


$\displaystyle I_n=\sum_{k=1}^{2n+1} \int_{-\pi}^{\pi} g_k(x) \, dx \quad (n=1,\ 2,\ 3,\ \cdots)$,

$\displaystyle J=\int_0^{\pi} \frac{x \sin x}{4-\cos^2 x} \, dx$,

$\displaystyle K=\int_0^{\pi} \frac{\sin x}{4-\cos^2 x} \, dx$


とする.このとき,以下の問に答えよ.

(1)$f_k(x)$を積分を使わずに表せ($k=2,\ 3,\ 4,\ \cdots$).
(2)$I_n$を$J$で表せ($n=1,\ 2,\ 3,\ \cdots$).
(3)$J$を$K$で表せ.
(4)$I_n$を求めよ($n=1,\ 2,\ 3,\ \cdots$).
小樽商科大学 国立 小樽商科大学 2015年 第3問
次の$[ ]$の中を適当に補え.

(1)整数$m \geqq 2015$に対し,
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{{(2m)}^2-1}=[ア] \]
(2)下図のような道に沿って$\mathrm{A}$地点から$\mathrm{B}$地点まで進むとき,最短経路は何通りあるかを求めると$[イ]$通り.
(図は省略)
(3)中心が$\mathrm{A}(1,\ 0)$にある半径$r (0<r<1)$の円に原点$\mathrm{O}$から$2$本の接線を引く.それぞれの接点と中心$\mathrm{A}$と原点$\mathrm{O}$を頂点とする四角形の面積の最大値$M$とそのときの$r$の値を求めると$(M,\ r)=[ウ]$.
小樽商科大学 国立 小樽商科大学 2015年 第5問
曲線$C:y=\log x$上の点$\displaystyle \left( \frac{3}{2},\ \log \frac{3}{2} \right)$における$C$の接線と直線$x=1$,$x=3$,曲線$C$で囲まれた部分の面積を求めよ.ただし,$\log x$は$x$の自然対数とする.
弘前大学 国立 弘前大学 2015年 第1問
次の問いに答えよ.

(1)$a$を実数とする.$\displaystyle \int_0^\pi \sin^2 ax \, dx$を$a$を用いて表せ.
(2)関数$\displaystyle f(x)=\frac{\log x}{x}$の増減を調べ,$2$つの数${59}^{61},\ {61}^{59}$の大小関係を決定せよ.
(3)$\displaystyle \lim_{k \to \infty}k^2 \int_1^{e^{\frac{1}{k}}} \frac{\log x}{x^k} \, dx$を求めよ.ただし,$k$は自然数を動くものとする.
弘前大学 国立 弘前大学 2015年 第2問
次の問いに答えよ.

(1)$r>0$を定数とする.点$(x,\ y)$が楕円$4x^2+y^2=r^2$上を動くとき,$6x+4y$のとり得る値の範囲を求めよ.
(2)$x,\ y$がすべての実数値をとるとき,$\displaystyle \frac{6x+4y+5}{4x^2+y^2+15}$の最大値と最小値を求めよ.
弘前大学 国立 弘前大学 2015年 第3問
次の問いに答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{1}{2}$のとき,次の不等式が成り立つことを示せ.
\[ -x^2-x \leqq \log (1-x) \leqq -x \]
(2)数列$\{a_n\}$を次によって定める.
\[ \begin{array}{rcl}
a_1 &=& \displaystyle \left( 1-\frac{1}{2 \cdot 1^2} \right) \\
a_2 &=& \displaystyle \left( 1-\frac{1}{2 \cdot 2^2} \right) \left( 1-\frac{2}{2 \cdot 2^2} \right) \phantom{\displaystyle\frac{[ ]}{2}} \\
& \vdots & \\
a_n &=& \displaystyle \left( 1-\frac{1}{2n^2} \right) \left( 1-\frac{2}{2n^2} \right) \cdots \left( 1-\frac{n}{2n^2} \right)
\end{array} \]
このとき,極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
弘前大学 国立 弘前大学 2015年 第4問
$xy$平面において,曲線$C:x^2+y^2=1 (x \geqq 0,\ y \geqq 0)$,および直線$\ell:y=(\tan \theta)x$を考える.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$をみたす定数とする.$S_1,\ S_2,\ S_3$を次によって定める.

$S_1:$ $y$軸,曲線$C$,直線$\ell$で囲まれた部分の面積
$S_2:$ $x$軸,曲線$C$,直線$x=\cos \theta$で囲まれた部分の面積
$S_3:$ $x$軸,直線$\ell$,直線$x=\cos \theta$で囲まれた部分の面積

次の問いに答えよ.

(1)$S_1$および$S_2$を$\theta$を用いて表せ.
(2)$S_1=S_2$となる$\theta$が存在することを示せ.
(3)$S_1=S_2=S_3$となる$\theta$は存在しないことを示せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。