タグ「分数」の検索結果

80ページ目:全4648問中791問~800問を表示)
九州工業大学 国立 九州工業大学 2015年 第2問
初項$1$,公差$3$の等差数列$\{a_n\}$と,一般項が$\displaystyle b_n=\left[ \frac{2n+2}{3} \right]$で与えられる数列$\{b_n\}$がある.ここで,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.たとえば,$\displaystyle b_1=\left[ \frac{4}{3} \right]=1$,$b_2=[2]=2$,$\displaystyle b_3=\left[ \frac{8}{3} \right]=2$である.数列$\{a_n\}$を次のように,$b_1$個,$b_2$個,$b_3$個,$\cdots$の群に分け,第$k$群には$b_k$個の数が入るようにする.

$\big| \quad a_1 \quad \big| \quad a_2,\ a_3 \quad \big| \quad a_4,\ a_5 \quad \big| \quad a_6,\ \cdots$
\ 第$1$群 \quad 第$2$群 \qquad\ 第$3$群 \qquad $\cdots$

第$k$群の最初の数を$c_k$とする.次に答えよ.

(1)自然数$m$に対して,$b_{3m-2}$,$b_{3m-1}$,$b_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{b_n\}$の初項から第$3m$項までの和$S_{3m}$を求めよ.
(2)自然数$m$に対して,$c_{3m-2}$,$c_{3m-1}$,$c_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{c_k\}$の初項から第$3m$項までの和$T_{3m}$を求めよ.
(3)$1000$は第何群の何番目の数か.
(4)$x \geqq 1$のとき$\displaystyle \sqrt{x^2+1}<x+\frac{1}{2}$であることを用いて,次の不等式が成り立つことを示せ.ただし,$m$は自然数とする.
\[ \sum_{k=1}^{3m} (\sqrt{c_k}-k)<\frac{m}{2} \]
徳島大学 国立 徳島大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle \tan \frac{x}{2}=m$とするとき,等式$\displaystyle \sin x=\frac{2m}{1+m^2},\ \cos x=\frac{1-m^2}{1+m^2}$が成り立つことを示せ.
(2)$\displaystyle -\pi<x<\frac{\pi}{2}$のとき,次の不等式が成り立つことを示せ.
\[ \sin x+\cos x \geqq \tan \frac{x}{2} \]
徳島大学 国立 徳島大学 2015年 第2問
数列$\{a_n\}$の初項$a_1$から第$n$項$a_n$までの和$S_n$が次を満たす.
\[ S_n=\frac{1}{3}(2a_n+8a_{n-1}) \quad (n=2,\ 3,\ 4,\ \cdots) \]

(1)$n \geqq 3$のとき,$a_n$を$a_{n-1}$と$a_{n-2}$の式で表せ.
(2)$n \geqq 3$のとき,$a_n-2a_{n-1}$を$a_1$と$a_2$の式で表せ.
(3)$a_1=1$とする.一般項$a_n$を求めよ.
徳島大学 国立 徳島大学 2015年 第1問
直交座標の原点$\mathrm{O}$を極とし,$x$軸の正の部分を始線とする極座標$(r,\ \theta)$を考える.この極座標で表された$3$点を$\displaystyle \mathrm{A} \left( 1,\ \frac{\pi}{3} \right)$,$\displaystyle \mathrm{B} \left( 2,\ \frac{2 \pi}{3} \right)$,$\displaystyle \mathrm{C} \left( 3,\ \frac{4 \pi}{3} \right)$とする.

(1)点$\mathrm{A}$の直交座標を求めよ.
(2)$\angle \mathrm{OAB}$を求めよ.
(3)$\triangle \mathrm{OBC}$の面積を求めよ.
(4)$\triangle \mathrm{ABC}$の外接円の中心と半径を求めよ.ただし,中心は直交座標で表せ.
千葉大学 国立 千葉大学 2015年 第2問
下図のような$1$辺の長さが$4$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.辺$\mathrm{AB}$上に点$\mathrm{P}$を$\mathrm{BP}=3$となるように取り,辺$\mathrm{BC}$上に点$\mathrm{Q}$を取る.また,$\mathrm{B}$から$\triangle \mathrm{PFQ}$へ垂線$\mathrm{BK}$を下ろす.$\mathrm{BQ}$の長さを$a$として,以下の問いに答えよ.

(1)$a$を用いて$\triangle \mathrm{PFQ}$の面積を表せ.
(2)$a$を用いて$\mathrm{BK}$の長さを表せ.
(3)$\mathrm{BK}$の長さは$\displaystyle \frac{\sqrt{30a}}{5}$以下であることを示せ.
(図は省略)
千葉大学 国立 千葉大学 2015年 第1問
下図のような$1$辺の長さが$4$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.辺$\mathrm{AB}$上に点$\mathrm{P}$を$\mathrm{BP}=3$となるように取り,辺$\mathrm{BC}$上に点$\mathrm{Q}$を取る.また,$\mathrm{B}$から$\triangle \mathrm{PFQ}$へ垂線$\mathrm{BK}$を下ろす.$\mathrm{BQ}$の長さを$a$として,以下の問いに答えよ.

(1)$a$を用いて$\triangle \mathrm{PFQ}$の面積を表せ.
(2)$a$を用いて$\mathrm{BK}$の長さを表せ.
(3)$\mathrm{BK}$の長さは$\displaystyle \frac{\sqrt{30a}}{5}$以下であることを示せ.
(図は省略)
徳島大学 国立 徳島大学 2015年 第1問
四面体$\mathrm{OABC}$において$\mathrm{OA}=2$,$\mathrm{OB}=\mathrm{OC}=1$,$\displaystyle \mathrm{BC}=\frac{\sqrt{10}}{2}$,$\angle \mathrm{AOB}=\angle \mathrm{AOC}={60}^\circ$とする.点$\mathrm{O}$から平面$\mathrm{ABC}$に下ろした垂線を$\mathrm{OH}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$,$\overrightarrow{c} \cdot \overrightarrow{a}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
千葉大学 国立 千葉大学 2015年 第2問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
千葉大学 国立 千葉大学 2015年 第2問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
千葉大学 国立 千葉大学 2015年 第3問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。