タグ「分数」の検索結果

73ページ目:全4648問中721問~730問を表示)
東京大学 国立 東京大学 2015年 第2問
どの目も出る確率が$\displaystyle \frac{1}{6}$のさいころを$1$つ用意し,次のように左から順に文字を書く.

さいころを投げ,出た目が$1,\ 2,\ 3$のときは文字列$\mathrm{AA}$を書き,$4$のときは文字$\mathrm{B}$を,$5$のときは文字$\mathrm{C}$を,$6$のときは文字$\mathrm{D}$を書く.さらに繰り返しさいころを投げ,同じ規則に従って,$\mathrm{AA}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$をすでにある文字列の右側につなげて書いていく.
たとえば,さいころを$5$回投げ,その出た目が順に$2,\ 5,\ 6,\ 3,\ 4$であったとすると,得られる文字列は,
\[ \mathrm{A} \ \mathrm{A} \ \mathrm{C} \ \mathrm{D} \ \mathrm{A} \ \mathrm{A} \ \mathrm{B} \]
となる.このとき,左から$4$番目の文字は$\mathrm{D}$,$5$番目の文字は$\mathrm{A}$である.

(1)$n$を正の整数とする.$n$回さいころを投げ,文字列を作るとき,文字列の左から$n$番目の文字が$\mathrm{A}$となる確率を求めよ.
(2)$n$を$2$以上の整数とする.$n$回さいころを投げ,文字列を作るとき,文字列の左から$n-1$番目の文字が$\mathrm{A}$で,かつ$n$番目の文字が$\mathrm{B}$となる確率を求めよ.
広島大学 国立 広島大学 2015年 第3問
座標空間内に$5$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A} \left(0,\ 0,\ \frac{3}{4} \right),\quad \mathrm{B}\left( \frac{1}{2},\ 0,\ \frac{1}{2} \right),\quad \mathrm{C}(s,\ t,\ 0),\quad \mathrm{D}(0,\ u,\ 0) \]
がある.ただし,$s,\ t,\ u$は実数で,$s>0$,$t>0$,$s+t=1$を満たすとする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面が$y$軸と点$\mathrm{D}$で交わっているとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$と$x$軸との交点の$x$座標を求めよ.
(2)$u$を$t$を用いて表せ.また,$0<u<1$であることを示せ.
(3)点$(0,\ 1,\ 0)$を$\mathrm{E}$とする.点$\mathrm{D}$が線分$\mathrm{OE}$を$12:1$に内分するとき,$t$の値を求めよ.
神戸大学 国立 神戸大学 2015年 第3問
$a,\ b,\ c$を$1$以上$7$以下の自然数とする.次の条件$(*)$を考える.

\mon[$(*)$] $3$辺の長さが$a,\ b,\ c$である三角形と,$3$辺の長さが$\displaystyle \frac{1}{a},\ \frac{1}{b},\ \frac{1}{c}$である三角形が両方とも存在する.

以下の問に答えよ.

(1)$a=b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(2)$a>b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(3)条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
東京大学 国立 東京大学 2015年 第6問
$n$を正の整数とする.以下の問いに答えよ.

(1)関数$g(x)$を次のように定める.
\[ g(x)=\left\{ \begin{array}{ll}
\displaystyle\frac{\cos (\pi x)+1}{2} & (|x| \leqq 1 \text{のとき}) \\
0 & (|x|>1 \text{のとき})
\end{array} \right. \]
$f(x)$を連続な関数とし,$p,\ q$を実数とする.$\displaystyle |x| \leqq \frac{1}{n}$をみたす$x$に対して$p \leqq f(x) \leqq q$が成り立つとき,次の不等式を示せ.
\[ p \leqq n \int_{-1}^1 g(nx)f(x) \, dx \leqq q \]
(2)関数$h(x)$を次のように定める.
\[ h(x)=\left\{ \begin{array}{ll}
\displaystyle -\frac{\pi}{2} \sin (\pi x) & (|x| \leqq 1 \text{のとき}) \\
0 & (|x|>1 \text{のとき})
\end{array} \right. \]
このとき,次の極限を求めよ.
\[ \lim_{n \to \infty} n^2 \int_{-1}^1 h(nx) \log (1+e^{x+1}) \, dx \]
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
東京大学 国立 東京大学 2015年 第4問
投げたとき表と裏の出る確率がそれぞれ$\displaystyle \frac{1}{2}$のコインを$1$枚用意し,次のように左から順に文字を書く.

コインを投げ,表が出たときは文字列$\mathrm{AA}$を書き,裏が出たときは文字$\mathrm{B}$を書く.さらに繰り返しコインを投げ,同じ規則に従って,$\mathrm{AA}$,$\mathrm{B}$をすでにある文字列の右側につなげて書いていく.
たとえば,コインを$5$回投げ,その結果が順に表,裏,裏,表,裏であったとすると,得られる文字列は,
\[ \mathrm{A} \ \mathrm{A} \ \mathrm{B} \ \mathrm{B} \ \mathrm{A} \ \mathrm{A} \ \mathrm{B} \]
となる.このとき,左から$4$番目の文字は$\mathrm{B}$,$5$番目の文字は$\mathrm{A}$である.

(1)$n$を正の整数とする.$n$回コインを投げ,文字列を作るとき,文字列の左から$n$番目の文字が$\mathrm{A}$となる確率を求めよ.
(2)$n$を$2$以上の整数とする.$n$回コインを投げ,文字列を作るとき,文字列の左から$n-1$番目の文字が$\mathrm{A}$で,かつ$n$番目の文字が$\mathrm{B}$となる確率を求めよ.
埼玉大学 国立 埼玉大学 2015年 第2問
四面体$\mathrm{ABCD}$がある.線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$は同一平面上にあり,四面体のどの頂点とも異なるとする.このとき下記の設問に答えよ.

(1)$\mathrm{PQ}$と$\mathrm{RS}$が平行であるとき,等式
\[ \frac{\mathrm{AP}}{\mathrm{PB}} \cdot \frac{\mathrm{BQ}}{\mathrm{QC}} \cdot \frac{\mathrm{CR}}{\mathrm{RD}} \cdot \frac{\mathrm{DS}}{\mathrm{SA}}=1 \]
が成り立つことを示せ.
(2)$\mathrm{PQ}$と$\mathrm{RS}$が平行でないとき,等式
\[ \frac{\mathrm{AP}}{\mathrm{PB}} \cdot \frac{\mathrm{BQ}}{\mathrm{QC}} \cdot \frac{\mathrm{CR}}{\mathrm{RD}} \cdot \frac{\mathrm{DS}}{\mathrm{SA}}=1 \]
が成り立つことを示せ.
北海道大学 国立 北海道大学 2015年 第3問
平面において,一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.$\mathrm{O}$を通り直線$\mathrm{OA}$と垂直な直線上に$\mathrm{O}$と異なる点$\mathrm{P}$をとる.$\mathrm{O}$を通り直線$\mathrm{OB}$と垂直な直線上に$\mathrm{O}$と異なる点$\mathrm{Q}$をとる.ベクトル$\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}$は$\overrightarrow{\mathrm{AB}}$に垂直であるとする.

(1)$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OA}}$を示せ.
(2)ベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$のなす角を$\alpha$とする.ただし,$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.このときベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$のなす角が$\pi-\alpha$であることを示せ.

(3)$\displaystyle \frac{|\overrightarrow{\mathrm{OP}}|}{|\overrightarrow{\mathrm{OA}}|}=\frac{|\overrightarrow{\mathrm{OQ}}|}{|\overrightarrow{\mathrm{OB}}|}$を示せ.
神戸大学 国立 神戸大学 2015年 第1問
座標平面上の$2$つの曲線$\displaystyle y=\frac{x-3}{x-4}$,$\displaystyle y=\frac{1}{4}(x-1)(x-3)$をそれぞれ$C_1$,$C_2$とする.以下の問に答えよ.

(1)$2$曲線$C_1$,$C_2$の交点をすべて求めよ.
(2)$2$曲線$C_1$,$C_2$の概形をかき,$C_1$と$C_2$で囲まれた図形の面積を求めよ.
神戸大学 国立 神戸大学 2015年 第4問
$a,\ b$を実数とし,自然数$k$に対して$\displaystyle x_k=\frac{2ak+6b}{k(k+1)(k+3)}$とする.以下の問に答えよ.

(1)$\displaystyle x_k=\frac{p}{k}+\frac{q}{k+1}+\frac{r}{k+3}$がすべての自然数$k$について成り立つような実数$p,\ q,\ r$を,$a,\ b$を用いて表せ.
(2)$b=0$のとき,$3$以上の自然数$n$に対して$\displaystyle \sum_{k=1}^n x_k$を求めよ.
また,$a=0$のとき,$4$以上の自然数$n$に対して$\displaystyle \sum_{k=1}^n x_k$を求めよ.
(3)無限級数$\displaystyle \sum_{k=1}^\infty x_k$の和を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。