タグ「分数」の検索結果

72ページ目:全4648問中711問~720問を表示)
京都大学 国立 京都大学 2015年 第1問
$2$つの関数$\displaystyle y=\sin \left( x+\frac{\pi}{8} \right)$と$y=\sin 2x$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の部分で囲まれる領域を,$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
京都大学 国立 京都大学 2015年 第5問
$a,\ b,\ c,\ d,\ e$を正の有理数として整式

$f(x)=ax^2+bx+c$
$g(x)=dx+e$

を考える.すべての正の整数$n$に対して$\displaystyle \frac{f(n)}{g(n)}$は整数であるとする.このとき,$f(x)$は$g(x)$で割り切れることを示せ.
京都大学 国立 京都大学 2015年 第5問
$a,\ b,\ c,\ d,\ e$を正の実数として整式

$f(x)=ax^2+bx+c$
$g(x)=dx+e$

を考える.すべての正の整数$n$に対して$\displaystyle \frac{f(n)}{g(n)}$は整数であるとする.このとき,$f(x)$は$g(x)$で割り切れることを示せ.
京都大学 国立 京都大学 2015年 第6問
$2$つの関数を
\[ f_0(x)=\frac{x}{2},\quad f_1(x)=\frac{x+1}{2} \]
とおく.$\displaystyle x_0=\frac{1}{2}$から始め,各$n=1,\ 2,\ \cdots$について,それぞれ確率$\displaystyle \frac{1}{2}$で$x_n=f_0(x_{n-1})$または$x_n=f_1(x_{n-1})$と定める.このとき,$\displaystyle x_n<\frac{2}{3}$となる確率$P_n$を求めよ.
大阪大学 国立 大阪大学 2015年 第1問
自然数$n$に対して関数$f_n(x)$を
\[ f_n(x)=\frac{x}{n(1+x)} \log \left( 1+\frac{x}{n} \right) \quad (x \geqq 0) \]
で定める.以下の問いに答えよ.

(1)$\displaystyle \int_0^n f_n(x) \, dx \leqq \int_0^1 \log (1+x) \, dx$を示せ.
(2)数列$\{I_n\}$を
\[ I_n=\int_0^n f_n(x) \, dx \]
で定める.$0 \leqq x \leqq 1$のとき$\log (1+x) \leqq \log 2$であることを用いて数列$\{I_n\}$が収束することを示し,その極限値を求めよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$であることは用いてよい.
大阪大学 国立 大阪大学 2015年 第2問
直線$\ell:y=kx+m (k>0)$が円$C_1:x^2+(y-1)^2=1$と放物線$\displaystyle C_2:y=-\frac{1}{2}x^2$の両方に接している.このとき,以下の問いに答えよ.

(1)$k$と$m$を求めよ.
(2)直線$\ell$と放物線$C_2$および$y$軸とで囲まれた図形の面積を求めよ.
北海道大学 国立 北海道大学 2015年 第2問
$p,\ q$は正の実数とし,
\[ a_1=0,\quad a_{n+1}=pa_n+(-q)^{n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定まる数列$\{a_n\}$がある.

(1)$\displaystyle b_n=\frac{a_n}{p^n}$とする.数列$\{b_n\}$の一般項を$p,\ q,\ n$で表せ.
(2)$q=1$とする.すべての自然数$n$について$a_{n+1} \geqq a_n$となるような$p$の値の範囲を求めよ.
北海道大学 国立 北海道大学 2015年 第5問
$n$は自然数,$a$は$\displaystyle a>\frac{3}{2}$をみたす実数とし,実数$x$の関数
\[ f(x)=\int_0^x (x-\theta)(a \sin^{n+1}\theta-\sin^{n-1}\theta) \, d\theta \]
を考える.ただし,$n=1$のときは$\sin^{n-1}\theta=1$とする.

(1)$\displaystyle \int_0^{\frac{\pi}{2}} \sin^{n+1} \theta \, d\theta=\frac{n}{n+1}\int_0^{\frac{\pi}{2}} \sin^{n-1}\theta \, d\theta$を示せ.

(2)$\displaystyle f^\prime \left( \frac{\pi}{2} \right)=0$をみたす$n$と$a$の値を求めよ.
(3)$(2)$で求めた$n$と$a$に対して,$\displaystyle f \left( \frac{\pi}{2} \right)$を求めよ.
一橋大学 国立 一橋大学 2015年 第1問
$n$を$2$以上の整数とする.$n$以下の正の整数のうち,$n$との最大公約数が$1$となるものの個数を$E(n)$で表す.たとえば
\[ E(2)=1,\quad E(3)=2,\quad E(4)=2,\ \quad\cdots,\quad E(10)=4,\ \quad \cdots \]
である.

(1)$E(1024)$を求めよ.
(2)$E(2015)$を求めよ.
(3)$m$を正の整数とし,$p$と$q$を異なる素数とする.$n=p^mq^m$のとき$\displaystyle \frac{E(n)}{n} \geqq \frac{1}{3}$が成り立つことを示せ.
九州大学 国立 九州大学 2015年 第2問
以下の問いに答えよ.

(1)関数$\displaystyle y=\frac{1}{x(\log x)^2}$は$x>1$において単調に減少することを示せ.
(2)不定積分$\displaystyle \int \frac{1}{x(\log x)^2} \, dx$を求めよ.
(3)$n$を$3$以上の整数とするとき,不等式
\[ \sum_{k=3}^n \frac{1}{k(\log k)^2}<\frac{1}{\log 2} \]
が成り立つことを示せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。