タグ「分数」の検索結果

6ページ目:全4648問中51問~60問を表示)
三重大学 国立 三重大学 2016年 第4問
以下の問いに答えよ.

(1)$\displaystyle y=xe^{-\frac{1}{2}x^2} (-2 \leqq x \leqq 2)$の増減および極値を調べ,このグラフの概形をかけ.

(2)$\displaystyle \int_0^1 xe^{-\frac{1}{2}x^2} \, dx$を求めよ.
三重大学 国立 三重大学 2016年 第4問
$\log x$は$x$の自然対数とする.

(1)$2$と$\log 4$の大小関係を,理由をつけて述べよ.必要ならば$e=2.718 \cdots$を用いてよい.さらに$x>0$のとき$\sqrt{x}>\log x$を示せ.
(2)$x>1$のとき,$\displaystyle y=\frac{x}{\log x}$の増減,極値およびグラフの凹凸を調べ,このグラフの概形をかけ.
(3)$\displaystyle y=\frac{1}{\sqrt{\log x}} (e \leqq x \leqq e^2)$と$\displaystyle y=\frac{1}{\log x} (e \leqq x \leqq e^2)$,および$x=e^2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
三重大学 国立 三重大学 2016年 第5問
$a$を正の実数とし,曲線$y=x^3$を$C_1$,曲線$\displaystyle y=\frac{9}{8}ax^2$を$C_2$とする.また,$C_1$と$C_2$の共通接線で$C_1$と$2$点を共有するものを$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)$C_1$と$\ell$が囲む図形の面積$S$を求めよ.
(3)$C_2$と$\ell$の接点の$x$座標$p$を求めよ.さらに$\displaystyle I=\int_0^p \left( \frac{9}{8}ax^2-x^3 \right) \, dx$とするとき,比$S:I$を最も簡単な整数比で表せ.
三重大学 国立 三重大学 2016年 第4問
$n$を自然数とし,$\displaystyle \mathrm{P}_k \left( \frac{k}{n},\ \log \left( 1+\frac{k}{n} \right) \right) (k=0,\ 1,\ \cdots,\ n)$を平面上の$n+1$個の点とする.ただし,$\log x$は$x$の自然対数である.

(1)$k=1,\ 2,\ \cdots,\ n$のとき,点$\mathrm{P}_{k-1}$と点$\mathrm{P}_k$との距離$\mathrm{P}_{k-1} \mathrm{P}_k$に対して
\[ \frac{1}{n} \sqrt{1+\displaystyle\frac{1}{\left( 1+\displaystyle\frac{k}{n} \right)^2}}<\mathrm{P}_{k-1} \mathrm{P}_k<\frac{1}{n} \sqrt{1+\displaystyle\frac{1}{\left( 1+\displaystyle\frac{k-1}{n} \right)^2}} \]
を示せ.
(2)$\displaystyle L_n=\sum_{k=1}^n \mathrm{P}_{k-1} \mathrm{P}_k$としたとき$\displaystyle \lim_{n \to \infty}L_n$を求めよ.
埼玉大学 国立 埼玉大学 2016年 第4問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,頂点$\mathrm{O}$から$\triangle \mathrm{ABC}$を含む平面に下ろした垂線の足を$\mathrm{H}$とする.また,四面体$\mathrm{OABC}$は
\[ |\overrightarrow{a|}=|\overrightarrow{b|}=|\overrightarrow{c|}=1,\quad \angle \mathrm{AOB}=\angle \mathrm{BOC}=\frac{\pi}{3} \]
を満たすものとし,$\angle \mathrm{AOC}=\theta \left( 0<\theta<\displaystyle\frac{2}{3} \pi \right)$とする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$を満たす$s,\ t,\ u$を求めよ.
(4)$|\overrightarrow{\mathrm{OH|}}$を求めよ.
(5)$\displaystyle 0<\theta<\frac{2}{3}\pi$のとき,四面体$\mathrm{OABC}$の体積の最大値を求めよ.
三重大学 国立 三重大学 2016年 第1問
平面上の$\triangle \mathrm{ABC}$と点$\mathrm{O}$を考える.$m,\ n$は正の実数とする.

(1)辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{M}$とする.このとき${|\overrightarrow{\mathrm{AB|}}}^2$,${|\overrightarrow{\mathrm{OM|}}}^2$を${|\overrightarrow{\mathrm{OA|}}}^2$,${|\overrightarrow{\mathrm{OB|}}}^2$と内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$で表せ.さらに
\[ \frac{mn}{m+n} {|\overrightarrow{\mathrm{AB|}}}^2+(m+n) {|\overrightarrow{\mathrm{OM|}}}^2=n {|\overrightarrow{\mathrm{OA|}}}^2+m {|\overrightarrow{\mathrm{OB|}}}^2 \]
を示せ.
(2)辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{M}_1$,辺$\mathrm{BC}$を$m:n$に内分する点を$\mathrm{M}_2$,辺$\mathrm{CA}$を$m:n$に内分する点を$\mathrm{M}_3$とする.このとき${|\overrightarrow{\mathrm{OA|}}}^2+{|\overrightarrow{\mathrm{OB|}}}^2+{|\overrightarrow{\mathrm{OC|}}}^2$は
\[ \frac{mn}{{(m+n)}^2} \left( {|\overrightarrow{\mathrm{AB|}}}^2+{|\overrightarrow{\mathrm{BC|}}}^2+{|\overrightarrow{\mathrm{CA|}}}^2 \right)+{|\overrightarrow{\mathrm{OM|_1}}}^2+{|\overrightarrow{\mathrm{OM|_2}}}^2+{|\overrightarrow{\mathrm{OM|_3}}}^2 \]
に等しいことを示せ.
(3)$(2)$の$m,\ n$を変化させたとき
\[ {|\overrightarrow{\mathrm{OA|}}}^2+{|\overrightarrow{\mathrm{OB|}}}^2+{|\overrightarrow{\mathrm{OC|}}}^2-{|\overrightarrow{\mathrm{OM|_1}}}^2-{|\overrightarrow{\mathrm{OM|_2}}}^2-{|\overrightarrow{\mathrm{OM|_3}}}^2 \]
の最大値を${|\overrightarrow{\mathrm{AB|}}}^2$,${|\overrightarrow{\mathrm{BC|}}}^2$,${|\overrightarrow{\mathrm{CA|}}}^2$で表せ.
東北大学 国立 東北大学 2016年 第2問
放物線$\displaystyle C:y=-\frac{1}{2}x^2$を考える.以下の問いに答えよ.

(1)関数$y=-2 |x|+k$のグラフが放物線$C$と共有点をもつような実数$k$の範囲を求めよ.
(2)$a,\ b$を実数とする.関数$y=-2 |x-a|+b$のグラフが放物線$C$と共有点をちょうど$4$個もつような点$(a,\ b)$全体のなす領域$D$を$xy$平面に図示せよ.
(3)$(2)$で求めた領域$D$の面積を求めよ.
東北大学 国立 東北大学 2016年 第4問
多項式$P(x)$を
\[ P(x)=\frac{(x+i)^7-(x-i)^7}{2i} \]
により定める.ただし,$i$は虚数単位とする.以下の問いに答えよ.

(1)$P(x)=a_0x^7+a_1x^6+a_2x^5+a_3x^4+a_4x^3+a_5x^2+a_6x+a_7$とするとき,係数$a_0,\ \cdots,\ a_7$をすべて求めよ.
(2)$0<\theta<\pi$に対して,
\[ P \left( \frac{\cos \theta}{\sin \theta} \right)=\frac{\sin 7\theta}{\sin^7 \theta} \]
が成り立つことを示せ.
(3)$(1)$で求めた$a_1,\ a_3,\ a_5,\ a_7$を用いて,多項式$Q(x)=a_1x^3+a_3x^2+a_5x+a_7$を考える.$\displaystyle \theta=\frac{\pi}{7}$として,$k=1,\ 2,\ 3$について
\[ x_k=\frac{\cos^2 k\theta}{\sin^2 k\theta} \]
とおく.このとき,$Q(x_k)=0$が成り立つことを示し,$x_1+x_2+x_3$の値を求めよ.
岐阜大学 国立 岐阜大学 2016年 第3問
$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$のとき,以下の問に答えよ.

(1)$\theta$の方程式$\cos 3\theta+\cos \theta=0$を解け.
(2)$k$を正の整数とする.$\theta$の方程式
\[ \cos 3\theta-k \cos \theta=0 \]
が解をもつ$k$を求めよ.また,そのときの解$\theta$を求めよ.
(3)$m$と$n$を正の整数とする.$\theta$の方程式
\[ m \cos \theta-3 \cos 3\theta+n(1+\cos 2\theta)=0 \]
が解をもつ$m,\ n$の組$(m,\ n)$を求めよ.また,そのときの解$\theta$を求めよ.
岐阜大学 国立 岐阜大学 2016年 第4問
数列$\{r_n\}$を初項$r_1=1$,公差$1$の等差数列とする.また,数列$\{a_n\}$を次の式で定める.
\[ a_n={r_n}^2+\frac{1}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
以下の問に答えよ.

(1)一般項$a_n$を求めよ.
(2)円$C_n:x^2+(y-a_n)^2={r_n}^2$と放物線$P:y=x^2$の共有点の座標を求めよ.
(3)円$C_n$と円$C_{n+1}$の共有点$(x_n,\ y_n)$の座標を求めよ.
(4)円$C_1,\ C_2,\ C_3$と放物線$P$の概形を描け.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。