タグ「分数」の検索結果

51ページ目:全4648問中501問~510問を表示)
明治大学 私立 明治大学 2016年 第2問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$の中点を$\mathrm{P}$,線分$\mathrm{BC}$の中点を$\mathrm{Q}$,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ア]}{[イ]}(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$である.
(2)線分$\mathrm{AR}$を延長し,三角形$\mathrm{OBC}$と交わる点を$\mathrm{S}$とする.$\mathrm{AR}:\mathrm{AS}=1:t$とすると,$\displaystyle t=\frac{[ウ]}{[エ]}$である.また,$\displaystyle \overrightarrow{\mathrm{OS}}=\frac{[オ]}{[カ]}(\overrightarrow{b}+\overrightarrow{c})$である.
(3)$\angle \mathrm{OAS}=\theta$とすると,$\displaystyle \cos \theta=\frac{\sqrt{[キ]}}{[ク]}$である.
明治大学 私立 明治大学 2016年 第1問
次の空欄$[オ]$に当てはまるものを解答群の中から選べ.それ以外の空欄には,当てはまる$0$から$9$までの数字を入れよ.

(1)$x \neq 7$とする.このとき,不等式
\[ -x^2-x+20>\frac{140}{7-x} \]
を満たす$x$の値の範囲は,
\[ -[ア]<x<[イ],\quad [ウ]<x<[エ] \]
である.
(2)$q$を正の実数とするとき,
\[ \lim_{s \to 1} \frac{q^s-q}{s-1}=[オ] \]
である.
$a,\ b,\ c$を実数とする.$x>0$に対して,関数$f(x)$を
\[ f(x)=\lim_{n \to \infty} \left\{ n(x^{1+\frac{1}{n}}-x)-\frac{ax-2b+x^{n+1}-cx^n}{4+x^n} \right\} \]
と定義する.$f(x)$が$x=1$で連続であるとき,
\[ a-[カ]b+[キ]c=[ク] \]
となる.
オの解答群(ただし,$\log$は自然対数,$e$はその底とする)

\begin{tabular}{llllllllll}
$\nagamarurei 0$ & & $\nagamaruichi 1$ & & $\nagamaruni q$ & & $\nagamarusan q^{-1}$ & & $\nagamarushi e^q$ \\
$\nagamarugo e^{-q}$ & & $\nagamaruroku \log q$ & & $\nagamarushichi -\log q$ & & $\nagamaruhachi q \log q$ & & $\nagamarukyu -q \log q$
\end{tabular}
明治大学 私立 明治大学 2016年 第1問
次の$[ ]$に適切な数を入れよ.

(1)座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(3,\ 1)$,$\mathrm{B}(7,\ -1)$に対して,
\[ \sin \angle \mathrm{AOB}=\frac{\sqrt{[ア]}}{[イ]} \]
である.
(2)開発中のある薬品を製造するために,$3$種類の全く別の方式$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が考案された.また,各々の方式で,失敗せず薬品が製造できる確率は,それぞれ,$90 \, \%$,$70 \, \%$,$50 \, \%$である.これらの$3$種類の方式で独立にそれぞれ$1$回ずつ薬品を製造するとき,少なくとも$1$つの方式で失敗せず薬品が製造できる確率は,$[ウ][エ].[オ] \%$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,
\[ S_n=5a_n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で表されるとき,初項は$\displaystyle a_1=\frac{[カ]}{[キ]}$であり,一般項は$\displaystyle a_n=\frac{[ク]^{n-1}}{[ケ]^n}$である.

また,$a_{2016}$の整数部分は$[コ][サ][シ]$桁の数である.ただし,$\log_{10}2=0.30103$とする.
(4)$a,\ b,\ c$を定数とし,$x$の関数$f(x)=ax^2+bx+c$が$f(-1)=1$,$f(2)=31$を満たす.さらに$x$の関数$\displaystyle g(x)=\int_0^x (t-1)f^\prime(t) \, dt$が$x=-2$,$x=1$で極値をとるとする.このとき,$a=[ス]$,$b=[セ]$,$c=[ソ]$であり,$g(x)$の極大値は$\displaystyle \frac{[タ][チ]}{[ツ]}$である.
明治大学 私立 明治大学 2016年 第1問
次の各問の$[ ]$に当てはまる数を入れよ.

(1)$100$以下の自然数で,$2$と$5$を共に素因数にもち,それ以外の素数を素因数にもたない数の個数は,$[ ]$個である.
同様に$100$以下の自然数で,$2$と$3$を共に素因数にもち,それ以外の素数を素因数にもたない数の個数は,$[ ]$である.
(2)曲線$C:y=x^3-3x+16$を第$1$象限で考える.曲線$C$の接線で,点$(0,\ 0)$を通るものを$\ell$とするとき,$\ell$の傾きは,$[ ]$であり,$C$,$\ell$と$y$軸で囲まれた領域の面積は,$[ ]$である.
(3)$1$辺の長さが$y$の正方形を$\mathrm{ABCD}$とし,$2$つの対角線の交点を$\mathrm{O}$とする.$\mathrm{O}$から垂直に高さが$x$の点$\mathrm{E}$をとり,四角錐$\mathrm{E}$-$\mathrm{ABCD}$を考える.$\mathrm{AE}$の長さが$\displaystyle \frac{\sqrt{3}}{2}$のとき,体積が最大となるのは,
\[ x=[ ],\quad y=[ ] \]
のときである.
明治大学 私立 明治大学 2016年 第3問
関数$f(x)=x^4-4x^3-2x^2+14x+13$について考える.

(1)$a,\ b,\ c$が$a<b<c$を満たす定数で,関数$y=f(x)$は$x=a$と$x=c$のとき極小値をとり,$x=b$のとき極大値をとる.このとき,$a^2+b^2+c^2=[ア][イ]$である.
(2)直線$y=2x+4$を$\ell$とし,直線$\ell$に平行な直線$y=2x+p$を$m$とする.ただし,$p$は定数である.曲線$y=f(x)$と直線$\ell$は異なる$2$点で接している.さらに,曲線$y=f(x)$と直線$m$が異なる$3$個の共有点をもつとき,$p=[ウ][エ]$である.
また,$\alpha,\ \beta,\ \gamma$が$\alpha<\beta<\gamma$を満たす定数で,曲線$y=f(x)$と直線$\ell$の異なる$2$つの接点の$x$座標を$\alpha,\ \gamma$とし,曲線$y=f(x)$と直線$m$の接点の$x$座標を$\beta$とする.直線$m$の$\alpha \leqq x \leqq \beta$の部分と曲線$y=f(x)$,および直線$x=\alpha$で囲まれた部分の面積は$\displaystyle \frac{[オ][カ][キ]}{[ク][ケ]}$である.
明治大学 私立 明治大学 2016年 第2問
次の各問の$[ ]$に当てはまる数を入れよ.

三角形$\mathrm{ABC}$の内点$\mathrm{O}$をとる.$\mathrm{AO}$,$\mathrm{BO}$,$\mathrm{CO}$をそれぞれ辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$までのばしたときの各交点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.ここで,三角形$\triangle \mathrm{ABO}$,$\triangle \mathrm{ACO}$,$\triangle \mathrm{BCO}$の面積が,それぞれ$\triangle \mathrm{ABO}=c$,$\triangle \mathrm{ACO}=b$,$\triangle \mathrm{BCO}=a$とする.

(1)$\mathrm{B}$と$\mathrm{C}$を通る直線を$\ell$とする.$\mathrm{A}$から$\ell$への垂線の長さを$6$,$\mathrm{O}$から$\ell$への垂線の長さを$3$とするとき,$\displaystyle \frac{\mathrm{AO}}{\mathrm{DO}}=[ア]$,$\displaystyle \frac{\triangle \mathrm{ABO}}{\triangle \mathrm{BDO}}=[イ]$である.

(2)上の$(1)$とは異なる三角形$\mathrm{ABC}$について,$a=8$,$b=10$,$c=6$とする.
$\displaystyle \frac{\triangle \mathrm{CDO}}{\triangle \mathrm{BDO}}=\frac{[ウ]}{[エ]}$だから,$\triangle \mathrm{BDO}$の面積は,$[オ]$であり,$\triangle \mathrm{CDO}$の面積は,$[カ]$である.
(3)同様にして,$\displaystyle \triangle \mathrm{CEO}=\frac{[キ][ク]}{[ケ]}$,$\displaystyle \triangle \mathrm{AEO}=\frac{[コ][サ]}{[シ]}$,$\displaystyle \triangle \mathrm{AFO}=\frac{[ス][セ]}{[ソ]}$,$\displaystyle \triangle \mathrm{BFO}=\frac{[タ]}{[チ]}$となり,特に


$\displaystyle \frac{\triangle \mathrm{AFO}}{\triangle \mathrm{BFO}} \cdot \frac{\triangle \mathrm{BDO}}{\triangle \mathrm{CDO}} \cdot \frac{\triangle \mathrm{CEO}}{\triangle \mathrm{AEO}}=[ツ]$

$\displaystyle \frac{\mathrm{AO}}{\mathrm{DO}} \cdot \frac{\mathrm{BO}}{\mathrm{EO}} \cdot \frac{\mathrm{CO}}{\mathrm{FO}}=\frac{[テ][ト]}{[ナ]}$


である.
明治大学 私立 明治大学 2016年 第3問
$n$と$k$を$n>k$を満たす自然数とする.$n$チームが参加するサッカーの大会がある.この大会では,全てのチームが$k$回の試合を行う.但し,その$k$試合の対戦相手は,全て異なるとする.このとき,次の問に答えよ.

(1)$n=4,\ k=2$の場合の大会が,何通りあるかもとめよ.
(2)$n=6,\ k=3$のとき,$1$つの大会の試合の総数をもとめよ.
(3)一般に,この大会が成立するためには,$n$か$k$のどちらかが,偶数でなければならないことを示せ.
(4)各試合の両チームの得点を全て合計し,試合数で割った値を,その大会における$1$試合の平均得点と呼ぶことにする.
$n=9$のとき,各チームが$k$試合行う大会における,$1$試合の平均得点が,$\displaystyle \left( \frac{1}{27}k^2-\frac{7}{9}k+5 \right)$点であったとする.$1$つの大会における総得点が,もっとも多くなる$k$をもとめよ.
学習院大学 私立 学習院大学 2016年 第1問
次の問いに答えよ.

(1)$3$つのさいころを同時に投げて,出た目の和を$S$とする.$S \geqq 13$となる確率を求めよ.
(2)$\displaystyle \cos x+\sin x=\frac{\sqrt{2}}{3}$であるとき,$\displaystyle \tan x+\frac{1}{\tan x}$の値を求めよ.
学習院大学 私立 学習院大学 2016年 第2問
すべての自然数$n$に対して
\[ \frac{n^3}{6}-\frac{n^2}{2}+\frac{4n}{3} \]
は整数であることを証明せよ.
学習院大学 私立 学習院大学 2016年 第4問
放物線$C:y=4-x^2$と$x$軸とで囲まれた部分を$D$とし,$D$の面積を$S$とする.

(1)$S$を求めよ.
(2)点$(-2,\ 0)$を通り傾き$\displaystyle \frac{4}{5}$の直線と$C$とで囲まれた部分の面積を$T$とする.$T$と$\displaystyle \frac{S}{2}$の大小を判定せよ.
(3)傾きが$\displaystyle \frac{4}{5}$であり$D$の面積を$2$等分する直線を$L$とする.$L$の方程式を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。