タグ「分数」の検索結果

445ページ目:全4648問中4441問~4450問を表示)
早稲田大学 私立 早稲田大学 2010年 第4問
$\displaystyle x \geqq \frac{1}{2}$において,直線$\displaystyle y=-\frac{1}{2}x+\frac{3}{2}$,曲線$\displaystyle y=4\left(x-\frac{1}{2}\right)^2$および$x$軸で囲まれる図形を$D$とする.ただし,$D$は境界をすべて含む.このとき,次の各問に答えよ.

(1)図形$D$の面積$S$を求めよ.
(2)直線$\ell:y=ax+b (a>0)$と図形$D$が共有点をもつとき,$a,\ b$のみたす不等式を求めよ.また,それらの不等式が表す領域を$a$-$b$平面上に図示せよ.
(3)図形$D$の面積$S$が,直線$y=4x+b$によって$2$等分されるような定数$b$の値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第1問
$xy$平面上の$2$点$\mathrm{A}(-1,\ 4)$,$\mathrm{B}(2,\ 5)$を通り,直線$y=\displaystyle\frac{1}{2}x$と共有点をもつ円を考える.以下の問に答えよ.

(1)この円の中心$\mathrm{P}$の軌跡を求めよ.
(2)この円の半径$r$の最小値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第4問
$xyz$空間において,2点P$(1,\ 0,\ 1)$,Q$(-1,\ 1,\ 0)$を考える.線分PQを$x$軸の周りに1回転して得られる曲面を$S$とする.以下の問に答えよ.

(1)曲面$S$と,2つの平面$x=1$および$x=-1$で囲まれる立体の体積を求めよ.
(2)(1)の立体の平面$y=0$による切り口を,平面$y=0$上において図示せよ.
(3)定積分$\displaystyle \int_0^1 \sqrt{t^2+1}\, dt$の値を$\displaystyle t=\frac{e^s-e^{-s}}{2}$と置換することによって求めよ.
これを用いて,(2)の切り口の面積を求めよ.
早稲田大学 私立 早稲田大学 2010年 第5問
表の出る確率が$p \ (0<p<1)$,裏の出る確率が$1-p$の硬貨が1枚ある.$n$を自然数とする.この硬貨を$2n$回投げたとき,表が$n+1$回以上出る確率を$P_n$とする.以下の問に答えよ.

(1)$P_2,\ P_3$を求めよ.
(2)$P_3>P_2$となる$p$の範囲を求めよ.
(3)$P_{n+1}-P_n = p^{n+1}(1-p)^n(ap+b)$となる$a,\ b$を$n$を用いて表せ.ただし$a,\ b$は$p$を含まないとする.
(4)$\displaystyle p=\frac{7}{16}$のとき,$P_n$を最大にする$n$を求めよ.
早稲田大学 私立 早稲田大学 2010年 第2問
関数$f(x)$は次の等式を満たす.
\[ f(x) = \int_{-1}^1 xf(t)\, dt + 1 \]
次の問に答えよ.

(1)関数$f(x)$を求めよ.
(2)$y=f(x)$のグラフと,点P$(0,\ p)$を中心とする半径$1$の円が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるとき,$p$が取り得る値の範囲を求めよ.
(3)(2)において,$\triangle \mathrm{ABP}$の面積$S$を$p$を用いて表せ.
(4)(2)において,$\angle \mathrm{APB} = \displaystyle\frac{2\pi}{3}$となるような$p$の値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第3問
$2$次方程式$x^2+2x+4=0$の$2$つの解を$\alpha,\ \beta$として,次の問に答えよ.

(1)$\displaystyle\frac{1}{\alpha^2}+\frac{1}{\beta^2}$の値を求めよ.
(2)$2$次方程式$2x^2+ax+b=0$の解の$1$つが$\displaystyle\frac{\beta}{\alpha}$となるように,係数$a,\ b$の値を定めよ.ただし,$a,\ b$は実数とする.
(3)$\alpha^3$および$\beta^3$の値を求めよ.
(4)$i$を虚数単位,$n$を自然数とするとき,
$c(n)=\displaystyle\frac{1}{\left\{i-\left(\displaystyle \strut \frac{\alpha}{2}\right)^n\right\}\left\{i-\left(\displaystyle\frac{\beta}{2}\right)^n\right\}}$の値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第1問
次の各問に答えよ.

(1)異なる$3$個のサイコロを同時に投げたとき,目の和が$5$の倍数になる場合は$[ア]$通りである.
(2)数列$\{a_n\}$は,初項が$2$,公差が$5$の等差数列であり,数列$\{b_n\}$は,初項が$1$,公比が$3$の等比数列である.このとき
\[ a_1b_1 + a_2b_2 + \cdots + a_nb_n = \frac{[イ]+([ウ]n+[エ])3^n}{[オ]} \]
である.ただし,$[オ]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2010年 第5問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{BC}$を$4:1$に内分する点を$\mathrm{R}$とする.この四面体を$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面で切り,この平面が線分$\mathrm{AC}$と交わる点を$\mathrm{S}$とするとき,線分の長さの比$\mathrm{AS}:\mathrm{SC}$を求めることを考えよう.\\
点$\mathrm{S}$は$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面上にあるから,定数$s,\ t,\ u$を用いて,
\[ \overrightarrow{\mathrm{OS}} = s \, \overrightarrow{\mathrm{OP}} + t \, \overrightarrow{\mathrm{OQ}} +u \, \overrightarrow{\mathrm{OR}} \quad (s+t+u=1) \]
と書くことができる.ここで,$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ス]\overrightarrow{\mathrm{OB}}+[セ]\overrightarrow{\mathrm{OC}}}{[ソ]}$であるから,$\overrightarrow{\mathrm{OS}}$は$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$それぞれの定数倍の和として表すことができる.そこで,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$の係数をそれぞれ定数$s^{\prime},\ t^{\prime},\ u^{\prime}$とおくことにより
\[ \overrightarrow{\mathrm{OS}} = s^{\prime}\overrightarrow{\mathrm{OA}} + t^{\prime}\overrightarrow{\mathrm{OB}} +u^{\prime}\overrightarrow{\mathrm{OC}} \quad (18s^{\prime}+16t^{\prime}+11u^{\prime}=[タ]) \]
と書くことができる.ところが,点$\mathrm{S}$は線分$\mathrm{AC}$上にあることから,$s^{\prime},\ t^{\prime}\ u^{\prime}$を求めることができ,$\mathrm{AS}:\mathrm{SC}=[チ]:[ツ]$であることがわかる.
ただし,$[ソ]$,$[チ]$,$[ツ]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2010年 第7問
$\alpha=72^\circ$のとき,$\cos 3\alpha - \cos 2\alpha = [ネ]$であり,$\displaystyle \cos^2 \frac{\alpha}{2} = \frac{[ノ]+\sqrt{[ハ]}}{8}$である.
早稲田大学 私立 早稲田大学 2010年 第1問
次の[\phantom{ア]}にあてはまる数,数式または文字等を解答用紙の所定欄に記入せよ.

(1)極限
\[ \lim_{n\to \infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(n+n)} \]
の値は$[ア]$である.
(2)ある囲碁大会で,$5$つの地区から男女が各$1$人ずつ選抜されて,男性$5$人と女性$5$人のそれぞれが異性を相手とする対戦を$1$回行う.その対戦組み合わせを無作為な方法で決めるとき,同じ地区同士の対戦が含まれない組み合わせが起こる確率は$[イ]$である.
(3)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$2:3$に内分する点を$\mathrm{Q}$とする.直線$\mathrm{BQ}$と直線$\mathrm{CP}$の交点を$\mathrm{R}$とするとき,ベクトル$\overrightarrow{\mathrm{AR}}$をベクトル$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$で表すと$[ウ]$である.
(4)関数
\[ y= \frac{x}{\sqrt{x^2+1}+1} \]
の逆関数を表す式は$y= [エ]$で,その定義域は$[オ]$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。