タグ「分数」の検索結果

444ページ目:全4648問中4431問~4440問を表示)
山梨大学 国立 山梨大学 2010年 第1問
次の問いに答えよ.

(1)第$n$項が次の式で表される数列の極限を求めよ.
\[ \frac{\sqrt{n}(\sqrt{n+1}-\sqrt{n+2})(5^{n+2}+2^{2n-1})}{5^n+2^{2n}} \]
(2)次の関数を微分せよ.$f(x)=\sqrt{\left( \displaystyle\frac{x-1}{x^2+3} \right)^3}$
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} x \sin (2x-\frac{\pi}{4}) \, dx$を求めよ.
(4)定積分$\displaystyle \int_0^4 \frac{x}{\sqrt{2x+1}} \, dx$を求めよ.
山梨大学 国立 山梨大学 2010年 第2問
$\displaystyle f(x)=\cos x+\frac{1}{2}\sin 2x \ (0 \leqq x \leqq 2\pi)$とする.

(1)関数$f(x)$の最大値と最小値,および,それらを与える$x$を求めよ.
(2)曲線$y=f(x)$の変曲点は$4$個あることを示せ.
(3)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$において,$2$つの曲線$y=f(x)$と$y=\cos x$で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2010年 第3問
$xy$平面上に$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(2,\ 1)$がある.次の方法により,$\mathrm{A}_n(x_n,\ 0)$,$\mathrm{B}_n(0,\ y_n) \ (n=1,\ 2,\ 3,\ \cdots)$を定める.$\mathrm{A}_1$を$\mathrm{A}_1(6,\ 0)$とする.直線$\mathrm{A}_1 \mathrm{P}$と$y$軸との交点を$\mathrm{B}_1(0,\ y_1)$とし,直線$\mathrm{B}_1 \mathrm{Q}$と$x$軸との交点を$\mathrm{A}_2(x_2,\ 0)$とする.同様に直線$\mathrm{A}_2 \mathrm{P}$と$y$軸との交点を$\mathrm{B}_2(0,\ y_2)$とし,直線$\mathrm{B}_2 \mathrm{Q}$と$x$軸との交点を$\mathrm{A}_3(x_3,\ 0)$とする.以下,これを繰り返す.

(1)直線$\mathrm{A}_n \mathrm{P}$の方程式を$x_n$を用いて表せ.また,直線$\mathrm{B}_n \mathrm{Q}$の方程式を$y_n$を用いて表せ.
(2)$x_{n+1}$を$x_n$を用いて表せ.
(3)$\displaystyle z_n=\frac{1}{x_n}$とおくとき,$z_n$を求めることにより,$x_n$を$n$の式で表せ.
豊橋技術科学大学 国立 豊橋技術科学大学 2010年 第2問
図に示す点$\mathrm{O}$を原点とする直交座標空間に点$\mathrm{P}(1,\ 0,\ 0)$をとる.点$\mathrm{P}$を,$xy$平面内で原点$\mathrm{O}$を中心として図に示す矢印の方向に角度$\theta$回転させた位置に点$\mathrm{Q}$をとる.さらに,点$\mathrm{Q}$および$z$軸を含む平面内で,点$\mathrm{O}$を中心として点$\mathrm{Q}$を矢印の方向に角度$\theta$回転させた位置に点$\mathrm{R}$をとる.ただし,角度$\theta$の範囲は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{R}$の座標$(x_\mathrm{R},\ y_\mathrm{R},\ z_\mathrm{R})$を,角度$\theta$を用いて表せ.
(2)$\displaystyle \angle \mathrm{ORP}=\frac{\pi}{3}$であるとき,角度$\theta$の値を求めよ.
(3)点$\mathrm{R}$から平面$x+y=0$に下ろした垂線の長さ$l$を,角度$\theta$の関数で表せ.
(4)(3)で求めた垂線の長さ$l$が最大となるときの角度$\theta$の値とそのときの$l$の値を求めよ.
鳴門教育大学 国立 鳴門教育大学 2010年 第1問
実数$x,\ a$が$x>0$かつ$\displaystyle \sqrt{x}=\frac{1+3a}{3}$を満たすとき,$\sqrt{3x-4a}$を$a$で表せ.
東京海洋大学 国立 東京海洋大学 2010年 第1問
座標平面上の$2$直線$\ell:x \sin \theta-y \cos \theta=0$(ただし$0^\circ \leqq \theta<180^\circ$),$\displaystyle m:y=\frac{1}{\sqrt{3}}x$を考える.$\ell$,$m$に関する対称移動をそれぞれ$f,\ g$とする.

(1)対称移動$f$を表す行列を求めよ.
(2)移動の合成$f \circ g$が原点のまわりの回転移動となることを示せ.また,その回転角を$\theta$を用いて表せ.
(3)移動の合成$f \circ g$を表す行列と$g \circ f$を表す行列が一致するときの$\theta$を求めよ.ただし,$f$と$g$は異なる移動とする.
東京海洋大学 国立 東京海洋大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面上で曲線$C:y=x |x-k|$(ただし$k$は正の定数)と直線$\ell:y=mx$が原点以外に$2$点$\mathrm{P}(\alpha,\ m \alpha)$,$\mathrm{Q}(\beta,\ m \beta)$で交わっている.ただし$0<\alpha<\beta$とする.

(1)$m$の範囲を$k$で表せ.
(2)$C$と$\ell$で囲まれた$2$つの図形の面積の和$S$を$m$と$k$で表せ.
(3)$S$が最小となるときの$m$を$k$で表せ.
(4)$(3)$のとき,$\displaystyle \frac{\mathrm{OQ}}{\mathrm{OP}}=\sqrt{2}$であることを示せ.
東京海洋大学 国立 東京海洋大学 2010年 第5問
次の問いに答えよ.

(1)$x>0$で定義された関数$\displaystyle f(x)=\frac{(\log x)^2}{x}$の増減を調べ,極値を求めよ.
(2)曲線$y=f(x)$と曲線$\displaystyle y=\frac{1}{x}$で囲まれた図形の面積を求めよ.
早稲田大学 私立 早稲田大学 2010年 第2問
$x$-$y$平面上の$3$点を
\[ \mathrm{A}(0,\ 9),\quad \mathrm{B}(-3,\ 0),\quad \mathrm{C}(2,\ 0) \]
とし,原点を$\mathrm{O}$とする.このとき,次の各問に答えよ.空欄にあてはまる最もかんたんな数値を解答欄に記入せよ.

(1)$\mathrm{AC}$を$3:1$に内分する点を$\mathrm{D}$とし,$\mathrm{BD}$が$y$軸と交わる点を$\mathrm{E}$とするとき,$\mathrm{OE}:\mathrm{EA}=[ ]:[ ]$である.
(2)$\mathrm{CE}$を延長して,$\mathrm{AB}$と交わる点を$\mathrm{F}$とするとき,$\triangle \mathrm{AFC}$の面積は,$\triangle \mathrm{ABC}$の面積の$\displaystyle\frac{[ ]}{[ ]}$である.
早稲田大学 私立 早稲田大学 2010年 第3問
$A$を正定数,角$\theta$を$0^\circ<\theta<45^\circ$とし,数列$\{a_n\}$を
\[ a_1 = \frac{A\sin \theta}{1+\sin \theta} \]
\[ a_n = \frac{\{A-2(a_1+a_2+\cdots+a_{n-1})\}\sin \theta}{1+\sin \theta} \quad (n=2,\ 3,\ \cdots) \]
で定義する。
このとき,次の各間に答えよ.

(1)$\displaystyle\frac{a_2}{a_1}$を,$A$と$\theta$を用いて表せ.
(2)$a_n (n \geqq 3)$を,$a_{n-1}$および$A,\ \theta$を用いて表せ.
(3)初項から第$n$項までの和$S_n = a_1+\cdots+a_n$を,$A,\ \theta$および$n$を用いて表せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。