タグ「分数」の検索結果

441ページ目:全4648問中4401問~4410問を表示)
帯広畜産大学 国立 帯広畜産大学 2010年 第1問
自然数$n$に対して,$\{a_n\}$は初項$a$,一般項$a_n$の数列であり,$\{b_n\}$ \\
は初項$b$,一般項$b_n$の数列である.座標平面上の点$\mathrm{P}_n(a_n,\ b_n)$, \\
点$\mathrm{P}_{n+1}(a_{n+1},\ b_{n+1})$と点$\mathrm{Q}_n(a_{n+1},\ b_n)$の座標は数列$\{a_n\}$と \\
$\{b_n\}$によって与えられる.また,点$\mathrm{P}_n$と点$\mathrm{P}_{n+1}$を通る直線の傾 \\
き$g_n$と$\triangle \mathrm{P}_n \mathrm{P}_{n+1} \mathrm{Q}_n$の面積$h_n$は,それぞれ$g_n=cb_n,\ h_n=dg_n$で定義され,各点の位置関係は右図のようになる.ここで,$h_n$を一般項とする数列を$\{h_n\}$で表し,また,$d>0$,任意の$n$について$a_{n+1}>a_n,\ h_n>0$と仮定する.
\img{3_2148_2010_1}{50}


(1)数列$\{a_n\},\ \{b_n\}$と$\{h_n\}$の中から等差数列と等比数列を見つけ,それぞれの公差または公比を$c$と$d$で表しなさい.
(2)数列$\{a_n\}$と数列$\{b_n\}$について,それぞれの一般項と,初項から第$n$項までの和を$a,\ b,\ c,\ d$および$n$で表しなさい.
(3)$\displaystyle d=\frac{1}{2}$のとき,$c$の値の範囲を求めなさい.
(4)$\displaystyle b=1,\ d=\frac{1}{2},\ 4h_2-6h_1-1=0$のとき,$c$の値を求めなさい.
(5)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$と$\mathrm{Q}_1$の各点を用いて,$\alpha=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_2$,$\beta=\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_3$,$\theta=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_3$と定義する.$\displaystyle b=1,\ c=\frac{2}{3},\ d=\frac{1}{2}$のとき,$\tan \alpha,\ \tan \beta$と$\tan \theta$を求めなさい.
小樽商科大学 国立 小樽商科大学 2010年 第1問
次の[ ]の中を適当に補いなさい.

(1)不等式$4 \log_{\frac{1}{4}}(x-4)+\log_2(x-2)>0$を解くと[ ].
(2)下図において,地点Aから地点Bへの最短経路の総数は[ ].
\setlength\unitlength{1truecm}

(図は省略)

(3)$2010!=2^nm \ (m \text{は奇数})$のとき,自然数$n$を求めると$n=[ ]$.
旭川医科大学 国立 旭川医科大学 2010年 第1問
次の問いに答えよ.

(1)整数を係数とする$n$次方程式
\[ f(x)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots +a_{n-1}x+a_n=0 \]
が有理数の解$\displaystyle \frac{\beta}{\alpha}$($\alpha$と$\beta$は互いに素な整数とする)をもつとき,$\alpha$は$a_0$の約数であり$\beta$は$a_n$の約数であることを示せ.
(2)素数$p$に対して,
\[ x+y+z=\frac{p}{3},\quad xy+yz+zx=\frac{1}{p},\quad xyz=\frac{1}{p^3} \]
を満たす$x,\ y,\ z$がすべて正の有理数であるとき,$p$および$x,\ y,\ z$を求めよ.
旭川医科大学 国立 旭川医科大学 2010年 第3問
関数$\displaystyle f(x)=\sin x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right)$の逆関数を$g(x) \ (-1 \leqq t \leqq 1)$とおくとき,次の問いに答えよ.

(1)$-1<x<1$のとき,$g^\prime(x)$を$x$を用いて表せ.
(2)曲線$y=\sin^2 x \ (0 \leqq x \leqq \pi)$と直線$y=t \ (0<t<1)$の2つの交点の$x$座標を,それぞれ$\alpha,\ \beta \ (\alpha<\beta)$とおくとき,$\displaystyle \int_\alpha^\beta \sin^2 x \, dx$を$t$と関数$g$を用いて表せ.
(3)$\displaystyle h(t)=\frac{2}{\pi}\int_\alpha^\beta \sin^2 x \, dx-\sqrt{1-t^2} \ (0<t<1)$とおくとき,$h(t)<0 \ (0<t<1)$を示し$h(t)$を最小にする$t$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2010年 第2問
$\alpha>1$とする.$\displaystyle 0<t<\frac{\pi}{\alpha-1}$となる$t$に対して,$xy$平面上の点P$(\cos t,\ \sin t)$と点Q$(\cos \alpha t,\ \sin \alpha t)$を通る直線を$\ell_t$とする.次の問いに答えよ.

(1)直線$\ell_t$の方程式を
\[ f(t)x+g(t)y=h(t) \]
とする.$h(t)=-\sin (\alpha-1)t$のとき,$f(t),\ g(t)$を求めよ.
(2)行列$\left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right)$は逆行列をもつことを示せ.
(3)$x(t),\ y(t)$を
\[ \left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right) \left( \begin{array}{c}
x(t) \\
y(t)
\end{array} \right)=\left( \begin{array}{c}
h(t) \\
h^\prime(t)
\end{array} \right) \]
を満たすものとし,点R$(x(t),\ y(t))$が描く曲線を$C$とする.このとき,点Rは直線$\ell_t$上にあり,曲線$C$の点Rにおける接線は$\ell_t$と一致することを示せ.
旭川医科大学 国立 旭川医科大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle f(x)=\frac{1-\cos x}{x^2}$について,次の問いに答えよ.

$(ⅰ)$ $\displaystyle \lim_{x \to 0}f(x)$を求めよ.
$(ⅱ)$ 区間$0<x<\pi$で$f(x)$の増加減少を調べよ.

(2)三角形ABCにおいて,$\angle \text{A},\ \angle \text{B}$の大きさをそれぞれ$\alpha,\ \beta$とし,それらの角の対辺の長さをそれぞれ$a,\ b$で表す.$0<\alpha<\beta<\pi$のとき,次の不等式が成り立つことを証明せよ.
\[ \frac{b^2}{a^2}<\frac{1-\cos \beta}{1-\cos \alpha}<\frac{\beta^2}{\alpha^2} \]
小樽商科大学 国立 小樽商科大学 2010年 第4問
関数$f(x)$が,次の$(ⅰ),\ (ⅱ)$を満たしている.

(i) $f(0) \neq 0$である.
(ii) すべての実数$x,\ y$に対して,$\displaystyle f(x)+f(y)=2f \left( \frac{x+y}{2} \right) \times f \left( \frac{x-y}{2} \right)$が成立する.

$f(p)=f(q)$のとき,次の(1)~(3)に答えよ.

(1)$f(0)=1$を示せ.
(2)$f(p+q)+f(p-q)$を$f(p)$を用いて表せ.
(3)$f(p+q)=1$または$f(p-q)=1$が成立することを示せ.
鹿児島大学 国立 鹿児島大学 2010年 第8問
数字1が書かれたカードが1枚,数字2が書かれたカードが2枚,数字3が書かれたカードが1枚の合計4枚のカードがある.この4枚のカードを母集団とし,カードに書かれている数字を変量とする.このとき,次の各問いに答えよ.ただし,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを1個ずつ取り出すことを復元抽出といい,取り出したものをもとに戻さずに続けて抽出することを非復元抽出という.

(1)母平均$m$と母標準偏差$\sigma$を求めよ.
(2)この母集団から,非復元抽出によって,大きさ2の無作為標本を抽出し,そのカードの数字を取り出した順に$Y_1$,$Y_2$とする.標本平均$\displaystyle \overline{Y}=\frac{Y_1+Y_2}{2}$の確率分布,期待値$E(\overline{Y})$,標準偏差$\sigma(\overline{Y})$を求めよ.
(3)この母集団から,復元抽出によって,大きさ200の無作為標本を抽出し,その標本平均を$\overline{X}$とする.このとき,標本平均$\overline{X}$が近似的に正規分布に従うとみなすことができるとして,$P(\overline{X}<a)=0.05$を満たす定数$a$を求めよ.ただし,確率変数$Z$が標準正規分布$N(0,\ 1)$に従うとき,$P(Z>1.65)=0.05$とする.
長岡技術科学大学 国立 長岡技術科学大学 2010年 第1問
平面上の点P$_n$,Q$_n \ (n=1,\ 2,\ 3,\ \cdots)$を次のように定める. \\
P$_1(0,\ 0)$,Q$_1(0,\ 1)$とする. P$_n$,Q$_n$が定められているとして,Q$_n$を中心にP$_n$を時計回りに$\displaystyle \frac{\pi}{2}$回転させた点をP$_{n+1}$とする.さらに,P$_{n+1}$を中心にQ$_n$を反時計回りに$\displaystyle \frac{\pi}{2}$回転させた点とP$_{n+1}$の中点をQ$_{n+1}$とする.このとき,以下の問いに答えなさい.

(1)P$_2$,P$_3$の座標を求めなさい.
(2)すべてのP$_n$を通る直線の方程式を求めなさい.
(3)線分P$_n$Q$_n$の長さを$n$の式で表しなさい.
(4)P$_n$の$x$座標を$x_n$とおく.$x_n$を$n$の式で表しなさい.
(5)$\displaystyle \lim_{n \to \infty}x_n$を求めなさい.
長岡技術科学大学 国立 長岡技術科学大学 2010年 第3問
曲線$C:y=e^{-\frac{1}{2}x^2}$について以下の問いに答えなさい.

(1)曲線$C$上の点P$(t,\ e^{-\frac{1}{2}t^2})$における接線の方程式を求めなさい.
(2)(1)の接線と$x$軸,$y$軸および直線$x=t$で囲まれる台形の面積を$S(t)$とする.$t>0$の範囲で$t$が動くとき,$S(t)$の最大値を与える$t$とその最大値を求めなさい.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。