タグ「分数」の検索結果

438ページ目:全4648問中4371問~4380問を表示)
山形大学 国立 山形大学 2010年 第4問
次の問に答えよ.

(1)$e^x-1-xe^{\frac{\pi}{2}}>0$を満たす$x$の範囲を求めよ.
(2)$x \neq 0$のとき,$\displaystyle \frac{e^x-1}{x}$と$\displaystyle e^{\frac{x}{2}}$の大小を調べよ.
(3)$p$を$0<p<1$である定数とする.$x>0, x \neq 1$のとき$\displaystyle \frac{x^p-1}{x-1}$と$px^{\frac{p-1}{2}}$の大小を調べよ.
茨城大学 国立 茨城大学 2010年 第1問
以下の各問に答えよ.

(1)平行四辺形$\mathrm{ABCD}$の辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{E}$,直線$\mathrm{AE}$と対角線$\mathrm{BD}$との交点を$\mathrm{F}$,直線$\mathrm{AE}$と直線$\mathrm{CD}$との交点を$\mathrm{G}$とする.$\overrightarrow{\mathrm{AB}}$を$\overrightarrow{a}$で,$\overrightarrow{\mathrm{AD}}$を$\overrightarrow{b}$で表すとき,$3$つのベクトル$\overrightarrow{\mathrm{AE}},\ \overrightarrow{\mathrm{AF}},\ \overrightarrow{\mathrm{AG}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)関数$g(x)$を次式で定める.
\[ g(x)=\frac{1}{\pi}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \{ x \cos t+(1-x) \sin t \}^2 \, dt \]
このとき,$g(x)$の最小値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2010年 第2問
以下の問に答えよ.

(1)$0<x<1$で,$(\sqrt{2}-1)x+1<\sqrt{1+x}<\sqrt{2}$が成り立つことを示せ.
(2)$0<a<1$に対して定積分$\displaystyle \int_a^1 \sqrt{1-x} \, dx$,$\displaystyle \int_a^1 x\sqrt{1-x} \, dx$を計算せよ.
(3)極限値$\displaystyle \lim_{a \to 1-0}\frac{\displaystyle \int_a^1 \sqrt{1-x^2} \, dx}{(1-a)^{\frac{3}{2}}}$を求めよ.
大阪教育大学 国立 大阪教育大学 2010年 第1問
平面上に,点O,Aを$|\overrightarrow{\mathrm{OA}}|=1$であるようにとる.Oを中心にAを反時計回りに,$\displaystyle \frac{\pi}{6}$回転させた位置にある点をB,$\displaystyle \frac{\pi}{2}$回転させた位置にある点をCとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$と表す.次の問に答えよ.

(1)$\overrightarrow{b}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(2)$\triangle$OABの面積と$\triangle$OBCの面積をそれぞれ求めよ.
(3)直線ACと直線OBとの交点をDとする.また,Bを通って直線ACに平行な直線と,直線OAとの交点をEとする.$\overrightarrow{d}=\overrightarrow{\mathrm{OD}},\ \overrightarrow{e}=\overrightarrow{\mathrm{OE}}$と表す.このとき,$|\overrightarrow{d}|$と$|\overrightarrow{e}|$をそれぞれ求めよ.
(4)次の式を満たす点Pの存在する領域の面積を求めよ.
\[ \overrightarrow{\mathrm{OP}}=s\overrightarrow{e}+t\overrightarrow{c},\quad (0 \leqq s,\ 0 \leqq t,\ 1 \leqq s+t \leqq 2) \]
大阪教育大学 国立 大阪教育大学 2010年 第2問
自然数$n$に対して,
\[ I_n=\int_0^{\frac{\pi}{2}}\sin^n x \, dx \]
とおく.次の問に答えよ.

(1)定積分$I_1,\ I_2,\ I_3$を求めよ.
(2)次の不等式を証明せよ.
\[ I_n \geqq I_{n+1}\]
(3)次の漸化式が成り立つことを証明せよ.
\[ I_{n+2}=\frac{n+1}{n+2}I_n \]
(4)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} \]
茨城大学 国立 茨城大学 2010年 第1問
$\triangle$ABCにおいて$\angle \text{A},\ \angle \text{B},\ \angle \text{C}$の大きさと対辺の長さをそれぞれ$A,\ B,\ C$および$a,\ b,\ c$で表す.$\triangle$ABCの面積を$S$とするとき,以下の各問に答えよ.

(1)$\displaystyle \frac{\sin A}{\sin B \sin C}=\frac{\cos B}{\sin B}+\frac{\cos C}{\sin C}$を示せ.
(2)$\displaystyle \sin A,\ \sin B,\ \sin C,\ \frac{\sin A}{\sin B \sin C}$を$a,\ b,\ c,\ S$で表せ.
(3)$a \geqq b \geqq c$ならば,$\displaystyle \frac{\cos A}{\sin A} \leqq \frac{\cos B}{\sin B} \leqq \frac{\cos C}{\sin C}$となることを示せ.
茨城大学 国立 茨城大学 2010年 第3問
$\triangle \mathrm{ABC}$において$\angle \mathrm{A},\ \angle \mathrm{B},\ \angle \mathrm{C}$の大きさと対辺の長さをそれぞれ$A,\ B,\ C$および$a,\ b,\ c$で表す.$\triangle \mathrm{ABC}$の面積を$S$とし,$3$頂点を通る円の半径を$R$とする.$a \geqq b \geqq c$とするとき以下の各問に答えよ.

(1)$\sin A \geqq \sin B \geqq \sin C$を示せ.
(2)$S=2R^2 \sin A \sin B \sin C$を示せ.
(3)$\displaystyle \frac{a^2}{S},\ \frac{b^2}{S},\ \frac{c^2}{S}$のそれぞれを$\displaystyle \frac{\cos A}{\sin A},\ \frac{\cos B}{\sin B},\ \frac{\cos C}{\sin C}$を用いて表せ.
(4)$\displaystyle \frac{\cos A}{\sin A} \leqq \frac{\cos B}{\sin B} \leqq \frac{\cos C}{\sin C}$を示せ.
(5)$A \geqq B \geqq C$を示せ.
(6)$\displaystyle \frac{a^2}{S} \geqq \frac{4}{\sqrt{3}}$を示せ.
(7)$\triangle \mathrm{ABC}$が正三角形であるためには$\displaystyle \frac{a^2}{S} = \frac{4}{\sqrt{3}}$であることが必要十分であることを示せ.
愛媛大学 国立 愛媛大学 2010年 第8問
$n$を自然数とし,$\displaystyle f(x)=x^2e^{-\frac{2}{3}x^3}$とする.

(1)関数$y=f(x)$の増減を調べ,極値を求めよ.
(2)定積分$\displaystyle \int_1^n f(x) \, dx$を求めよ.
(3)不等式$\displaystyle \sum_{k=1}^n f(k)<\frac{3}{2}e^{-\frac{2}{3}}$を証明せよ.
大阪教育大学 国立 大阪教育大学 2010年 第3問
座標平面上で,行列$\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$で表される移動を$f$とする.0でないすべての実数$t$に対して,点P$\displaystyle \left( t+\frac{1}{t},\ t-\frac{1}{t} \right)$が$f$により曲線$x^2-y^2=4$上に移るとき,次の問に答えよ.

(1)$a,\ b,\ c,\ d$は,
\[ (a+b)^2=(c+d)^2,\quad (a-b)^2=(c-d)^2,\quad (a^2-c^2)+(d^2-b^2)=2 \]
を満たすことを示せ.
(2)$a,\ b,\ c,\ d$は,
\[ a^2-c^2=d^2-b^2=1,\quad ab=cd \]
を満たすことを示せ.
(3)$\biggl( \begin{array}{c}
X \\
Y
\end{array} \biggr)=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr) \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr)$とするとき,
\[ X^2-Y^2=x^2-y^2 \]
となることを示せ.
(4)点Qが直線$y=x$上にあるとき,$f(Q)$は直線$y=x$または直線$y=-x$上にあることを示せ.
徳島大学 国立 徳島大学 2010年 第4問
数列$\{a_n\}$が$\displaystyle a_1=2,\ a_{n+1}=\frac{a_n+2}{a_n+1} \ (n=1,\ 2,\ 3,\ \cdots)$で定められるとき,次の問いに答えよ.

(1)$a_n>1$を示せ.
(2)$\displaystyle |a_{n+1}-\sqrt{2}| \leqq \frac{\sqrt{2}-1}{2}|a_n-\sqrt{2}|$を示せ.
(3)数列$\{a_n\}$の極限値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。