タグ「分数」の検索結果

434ページ目:全4648問中4331問~4340問を表示)
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第2問
$n$は2以上の自然数とする.1つの袋と1つの箱がある.袋には白玉3個と赤玉2個が入っており,箱には何も入っていない.次の操作を考える.

袋から玉を1個取り出し,白玉なら袋に戻し,赤玉なら箱に入れる.

この操作を$n$回繰り返す.$n$回目の操作の後,箱に入っている赤玉の個数を$X$とする.

(1)$k$を$n$以下の自然数とする.$k$回目の操作では赤玉を取り出し$k$回目以外の$n-1$回の操作では白玉を取り出す確率を$n$と$k$を用いて表せ.次に,$X=1$である確率$p_n$を求めよ.
(2)$X=2$である確率$q_n$を求めよ.
(3)$X$の期待値$E_n$を求めよ.また,極限$\displaystyle \lim_{n \to \infty}\frac{1}{n}\log (2-E_n)$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第3問
関数$f(t)=2(\cos t-\sin t),\ g(t)=\cos t+\sin t$を用いて媒介変数表示された,$xy$平面上の曲線$C:x=f(t),\ y=g(t)$がある.点A$\displaystyle \left( \frac{3}{4},\ \frac{3}{2} \right)$から$C$上の点P$(f(t),\ g(t))$までの距離APの2乗$\text{AP}^2$を$h(t)$とおく.

(1)$\displaystyle \frac{d}{dt}h(t)=0$となる$t$の値を$0 \leqq t \leqq 2\pi$の範囲ですべて求めよ.
(2)$C$は楕円であることを示せ.
(3)Pが$C$上を動くとき,APを最小にするPの座標,およびAPを最大にするPの座標を求めよ.
福井大学 国立 福井大学 2010年 第2問
表の出る確率が$p$,裏の出る確率が$1-p$のコインがある.このコインを投げ,その結果により,駒が2点A,Bの間を移動し,ポイントを獲得することを繰り返す次のようなゲームを行う.

ルールa) \ 駒はゲームを始めるとき点Aにいる.
ルールb) \ 駒はコイン投げで表が出ればそのときいる点にとどまり,裏が出ればもう一方の点に移動する.
ルールc) \ $k$回目のコイン投げの結果,駒が点Aにいるときは$3k$ポイント新たに獲得し,点Bにいるときは$k$ポイント新たに獲得する.$(k=1,\ 2,\ 3,\ \cdots)$

$n$を自然数として,以下の問いに答えよ.

(1)$n$回コインを投げた結果,駒が点Aにいる確率を$a_n$とおく.$a_n$を求めよ.
(2)$k$回目のコイン投げの結果により新たに獲得するポイントの期待値を$E_k$とおく.$0<p<1$のとき,$\displaystyle \sum_{k=1}^n E_k$を$n$と$p$を用いて表せ.
(3)(1)で求めた$a_n$を$p$の関数と考え,$f_n(p)$と書くとき,次の極限値を求めよ.
\[ \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m f_n \left( \frac{k}{2m} \right) \]
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第4問
次の問いに答えよ.

(1)不定積分$\displaystyle \int \frac{1}{1+e^x} \, dx$を求めよ.
(2)実数$a$に対して定積分$\displaystyle \int_0^2 \left| \frac{1}{1+e^x}-\frac{1}{1+e^a} \right| \, dx$の値を$S(a)$とおく.$a$が$0 \leqq a \leqq 2$の範囲を動くとき,$S(a)$の最小値を求めよ.
愛知教育大学 国立 愛知教育大学 2010年 第2問
$x$が$\displaystyle 1 \leqq x \leqq \frac{7}{2}$の範囲を動くとき,以下の問いに答えよ.
\img{409_2570_2010_1}{10}


(1)図のような,底面の半径が$\sqrt{x}$,高さが$4-x$の直円錐の側面積$S$ \\
を求めよ.
(2)$\displaystyle \left( \frac{S}{\pi} \right)^2$を$f(x)$とするとき,$f(x)$の増減を調べ,$f(x)$の最大値, \\
最小値,およびそのときの$x$の値を求めよ.
山口大学 国立 山口大学 2010年 第3問
$n$を自然数とするとき,
\[ 2\sum_{k=1}^n (-1)^{k+1}k(k-1)=(-1)^{n+1}n^2+\frac{(-1)^n-1}{2} \]
が成り立つことを示しなさい.
山口大学 国立 山口大学 2010年 第2問
次の初項と漸化式で定まる数列$\{a_n\}$を考える.
\[ a_1=\frac{1}{2},\ a_{n+1}=e^{-a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
ここで,$e$は自然対数の底で,$1<e<3$である.このとき,次の問いに答えなさい.

(1)すべての自然数$n$について$\displaystyle \frac{1}{3}<a_n<1$が成り立つことを示しなさい.
(2)方程式$x=e^{-x}$はただ1つの実数解をもつことと,その解は$\displaystyle \frac{1}{3}$と1の間にあることを示しなさい.
(3)関数$f(x)=e^{-x}$に平均値の定理を用いることによって,次の不等式が成り立つことを示しなさい.
\begin{align}
\frac{1}{3} \text{と1との間の任意の実数}x_1,\ x_2 \text{について,} \nonumber \\
|f(x_2)-f(x_1)| \leqq e^{-\frac{1}{3}} |x_2-x_1| \nonumber
\end{align}
(4)数列$\{a_n\}$は,方程式$x=e^{-x}$の実数解に収束することを示しなさい.
九州工業大学 国立 九州工業大学 2010年 第1問
行列
\[ A=\left( \begin{array}{cc}
a-b & a \\
2a & a+b
\end{array} \right) \]
の定める移動(1次変換)
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right) = A \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
を$f$とし,原点を通る2直線を$\ell_1:y=m_1x,\ \ell_2:y=m_2x$とする$(m_1<m_2)$.次に答えよ.

(1)$f$により,直線$\ell_1$上の点$(1,\ m_1)$は$\ell_1$上の点に移り,直線$\ell_2$上の点$(1,\ m_2)$は$\ell_2$上の点に移るとする.$m_1,\ m_2$を$a,\ b$を用いて表せ.ただし,$a>0$とする.
(2)実数$a,\ b$が$(a-2)^2+b^2=3$をみたすとき,$\displaystyle \frac{b}{a}$のとる値の範囲を求めよ.
(3)(1)で求めた$m_1,\ m_2$に対して2直線$\ell_1,\ \ell_2$のなす角を$\theta$とする$\displaystyle \left( 0<\theta \leqq \frac{\pi}{2} \right)$.実数$a,\ b$が$(a-2)^2+b^2=3$をみたすとき,$\cos \theta$のとる値の範囲を求めよ.
高知大学 国立 高知大学 2010年 第4問
$xy$平面上の原点を中心として半径1の円$C$を考える.$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$とし,$C$上の点$(\cos \theta,\ \sin \theta)$をPとする.Pで$C$に接し,さらに$y$軸と接する円でその中心が円$C$の内部にあるものを$S$とし,その中心Qの座標を$(u,\ v)$とする.このとき,次の問いに答えよ.

(1)$u$と$v$をそれぞれ$\cos \theta$と$\sin \theta$を用いて表せ.
(2)$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$としたとき,点Qの軌跡の式を求めよ.さらに,その軌跡を図示せよ.
(3)円$S$の面積を$D(\theta)$とするとき,次の値を求めよ.
\[ \lim_{\theta \to \frac{\pi}{2}} \frac{D(\theta)}{\left( \displaystyle \frac{\pi}{2}-\theta \right)^2} \]
お茶の水女子大学 国立 お茶の水女子大学 2010年 第3問
実数上の関数$f(x),\ g(x)$を次のように定義する.
\[ f(x)=\frac{a^x-a^{-x}}{2},\quad g(x)=\frac{a^x+a^{-x}}{2} \]
ここで,$a$は$a>1$をみたす実数である.

(1)関数$y=f(x)$のグラフと関数$y=g(x)$のグラフの概形を描け.
(2)この2つのグラフと2つの直線$x=0,\ x=3$とで囲まれる領域の面積を求めよ.
(3)(2)で求めた面積を$S(a)$とするとき,$2 \leqq a \leqq 5$での$S(a)$の最大値と最小値とを求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。