タグ「分数」の検索結果

431ページ目:全4648問中4301問~4310問を表示)
熊本大学 国立 熊本大学 2010年 第2問
曲線$C:x^2+y^2=1 \ (x \geqq 0,\ y \geqq 0)$上に3点A$\displaystyle \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,P$(1,\ 0)$,Q$(0,\ 1)$をとり,$\displaystyle \angle \text{POR}=\theta \ \left( 0<\theta < \frac{\pi}{4} \right)$となる$C$上の点をR$(s,\ t)$とする.さらに,$C$上の点Xを2つのベクトル$s \overrightarrow{\mathrm{OA}}-t\overrightarrow{\mathrm{OX}}$と$t \overrightarrow{\mathrm{OA}}-s\overrightarrow{\mathrm{OX}}$が垂直になるようにとる.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OX}}$の内積の値を$\theta$を用いて表せ.
(2)条件をみたすXが弧AP上にとれるとき,$\theta$の範囲を求めよ.
(3)(2)で求めた$\theta$の範囲において,$\triangle$ROXの面積の最大値を求めよ.
佐賀大学 国立 佐賀大学 2010年 第1問
数列$\{a_n\}$が
\[ a_1=2,\quad a_{n+1}=2a_n+2 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定義されるとき,次の問いに答えよ.

(1)すべての自然数$n$に対して$a_{n+1}+b=2(a_n+b)$が成り立つような定数$b$を求めよ.
(2)一般項$a_n$を求めよ.
(3)$\displaystyle \frac{a_{2n}}{a_n} \geqq 10^{25}+1$をみたす最小の自然数$n$を求めよ.ただし,$\log_{10}2=0.3010$とする.
佐賀大学 国立 佐賀大学 2010年 第2問
$\theta$の関数$f(\theta)=A \sin (\theta + \alpha)$は$f(0^\circ)=1,\ f(90^\circ)=1$をみたしている.ただし,$A>0,\ 0^\circ \leqq \alpha < 360^\circ$とする.このとき,次の問いに答えよ.

(1)$A$と$\alpha$を求めよ.
(2)$f(\alpha +30^\circ)$と$\sin (\alpha +30^\circ) \cos (\alpha +30^\circ)$を求めよ.
(3)$\theta$の関数$g(\theta)$は
\begin{eqnarray}
& & \{f(\theta)\}^2 g(\theta)-k \{f(\theta)\}^2 = 2\{g(\theta)\}^2 -2kg(\theta)+g(\theta)-\frac{1}{4} \nonumber \\
& & g(\alpha + 30^\circ)=\sin (\alpha + 30^\circ) \cos (\alpha + 30^\circ) \nonumber
\end{eqnarray}
をみたしている.実数$k$と$g(\theta)$を求めよ.
宮崎大学 国立 宮崎大学 2010年 第5問
次の各問に答えよ.
\vspace*{-6mm}
\begin{spacing}{2.2}

(1)次の関数を微分せよ.

(2)$y=e^{\sin x \cos x}$
(3)$\displaystyle y=\frac{x}{\sqrt{x^2+3}}$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_{\log \pi}^{\log (2\pi)} e^x \sin (e^x) \, dx$
(6)$\displaystyle \int_0^1 e^{2x}(x+1) \, dx$
(7)$\displaystyle \int_0^\pi \sin x \cos (4x) \, dx$
(8)$\displaystyle \int_{-1}^0 \frac{x+1}{(x+2)(x+3)} \, dx$


\end{spacing}
\vspace*{-6mm}
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点$\mathrm{P}(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)$\mathrm{P}$が動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第1問
$a,\ b,\ c$を相異なる正の実数とするとき,以下の各問いに答えよ.

(1)次の$2$数の大小を比較せよ.
\[ a^3+b^3,\ a^2b+b^2a \]
(2)次の$4$数の大小を比較し,小さい方から順に並べよ.
\begin{eqnarray}
& & (a+b+c)(a^2+b^2+c^2),\quad (a+b+c)(ab+bc+ca), \nonumber \\
& & 3(a^3+b^3+c^3),\quad 9abc \nonumber
\end{eqnarray}
(3)$x,\ y,\ z$を正の実数とするとき
\[ \frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z} \]
のとりうる値の範囲を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点P$(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)Pが動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
熊本大学 国立 熊本大学 2010年 第4問
関数$\displaystyle f(x)=\int_x^{\frac{\pi}{4}-x} \log_4 (1+\tan t) \, dt \ \left( 0 \leqq x \leqq \frac{\pi}{8} \right)$について,以下の問いに答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$\displaystyle f \left(\frac{\pi}{8} \right)$および$f(0)$の値を求めよ.
(3)条件$a_1=f(0),\ a_{n+1}=f(a_n) \ (n=1,\ 2,\ 3,\ \cdots)$によって定まる数列$\{a_n\}$の一般項$a_n$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第1問
四角形ABCDは次の条件を満たす.

\mon[(i)] $\text{AB}=\text{BC}=\text{CD}=1$
\mon[(ii)] $\text{BD}=1,\ \angle \text{ABD}=90^\circ$

線分ACと線分BDとの交点をEとする.線分ABを3等分して,点Aに近い分点をMとし,点Bに近い分点をNとする.$\angle \text{CAB}=\alpha,\ \angle \text{MDN}=\beta$とおくとき,次の問いに答えよ.

(1)線分の長さの比の値$\displaystyle \frac{\text{BE}}{\text{DE}}$を求めよ.
(2)$\tan \beta$の値を求めよ.
(3)$\alpha$と$\beta$の大小を判定せよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第2問
定数$a$,関数$f(x)$,および数列$\{x_n\}$を次のように定める.
\begin{eqnarray}
& & 1<a<2,\quad f(x)=\frac{1}{2}(3x^2-x^3) \nonumber \\
& & x_1=a,\quad x_{n+1}=f(x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber
\end{eqnarray}

(1)関数$f(x)$の増減を調べよ.
(2)すべての自然数$n$に対して$1<x_n<2$を示せ.
(3)すべての自然数$n$に対して$x_{n+1}>x_n$を示せ.
(4)次の不等式を満たす$n$に無関係な定数$b \ (0<b<1)$があることを示せ.
\[ 2-x_{n+1} \leqq b(2-x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)数列$\{x_n\}$が収束することを示し,その極限値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。