タグ「分数」の検索結果

428ページ目:全4648問中4271問~4280問を表示)
富山大学 国立 富山大学 2010年 第1問
曲線$\displaystyle C_1:y=\sin 2x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸で囲まれた図形が,曲線$\displaystyle C_2:y= k\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2},\ k \text{は正の定数} \right)$によって2つの部分に分割されているとする.そのうちの,$C_1$と$C_2$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$および$x$軸で囲まれた部分の面積を$S_2$とする.このとき,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の,点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$と異なる交点の$x$座標を$\alpha$とするとき,$k$を$\alpha$を用いて表せ.
(2)$S_1$を$\alpha$を用いて表せ.
(3)$S_1=2S_2$のとき,$k$の値を求めよ.
高知大学 国立 高知大学 2010年 第3問
関数$f(x)$の導関数$f^{\, \prime}(x)$は$f^{\, \prime}(x)=x^2-1$を満たし,さらに$f(3)=6$であるとする.このとき,次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$f(x)$の極大値と極小値を求めよ.
(3)曲線$y=f(x)$と直線$y=kx$が接するときの$k$の値を求めよ.
(4)$\displaystyle g(x)=\frac{2}{9}x^3+\frac{2}{3}x^2-2x$とする.このとき,$y=f(x)$と$y=g(x)$のグラフを同一座標平面上に図示せよ.また,それらの共有点の座標を求めよ.
香川大学 国立 香川大学 2010年 第3問
方程式$x^3-1=0$の解のうち,1と異なるものの1つを$\omega$とする.このとき,次の問に答えよ.

(1)$\omega^2+\omega+1=0$を示せ.
(2)$a,\ b$が実数のとき,$(a+b\omega)(a+b\omega^2)$を$a,\ b$を用いて表せ.
(3)$\displaystyle \frac{1}{1+2\omega}$を$c+d\omega \ (c,\ d \text{は実数})$の形で表せ.
(4)$z=m+n\omega \ (m,\ n \text{は自然数})$に対し,$\displaystyle \frac{1}{z}$が$p+q\omega \ (p,\ q \text{は整数})$の形で表されるとき,$z$を求めよ.
香川大学 国立 香川大学 2010年 第1問
$\triangle$ABCにおいて,次の等式が成立することを示せ.

(1)$\displaystyle \sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
(2)$\displaystyle \cos A+\cos B+ \cos C=1+ 4\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
(3)$\displaystyle \tan A+ \tan B+ \tan C= \tan A \tan B \tan C$
香川大学 国立 香川大学 2010年 第3問
方程式$x^3-1=0$の解のうち,1と異なるものの1つを$\omega$とする.このとき,次の問に答えよ.

(1)$\omega^2+\omega+1=0$を示せ.
(2)$a,\ b$が実数のとき,$(a+b\omega)(a+b\omega^2)$を$a,\ b$を用いて表せ.
(3)$\displaystyle \frac{1}{1+2\omega}$を$c+d\omega \ (c,\ d \text{は実数})$の形で表せ.
(4)$z=m+n\omega \ (m,\ n \text{は自然数})$に対し,$\displaystyle \frac{1}{z}$が$p+q\omega \ (p,\ q \text{は整数})$の形で表されるとき,$z$を求めよ.
香川大学 国立 香川大学 2010年 第5問
$0 \leqq x \leqq 2\pi$において,関数$f(x)$を
\[ f(x)=\frac{2a(\sin x+\cos x)}{2+2\sin x \cos x - a(\sin x+ \cos x)} \]
と定める.ここで,$a$は$0<a<2$をみたす定数である.このとき,次の問に答えよ.

(1)$t=\sin x+ \cos x$とおくとき,関数$f(x)$を$t$を用いて表せ.
(2)(1)で求めた関数を$g(t)$とするとき,関数$g(t)$の最大値と最小値を求めよ.
(3)関数$f(x)$が最大値,最小値をとるときのそれぞれの$x$の値を求めよ.
香川大学 国立 香川大学 2010年 第3問
座標平面上を運動する点Pの時刻$t$における座標を
\[ x=e^t \cos t, y=e^t \sin t \]
とするとき,次の問に答えよ.

(1)時刻$t$における点Pの速度$\overrightarrow{v}$およびその大きさ$|\overrightarrow{v}|$を求めよ.
(2)$\displaystyle t=\frac{\pi}{2}$のとき,ベクトル$\overrightarrow{v}$が$x$軸の正の向きとのなす角$\alpha$を求めよ.
(3)原点をOとするとき,ベクトル$\overrightarrow{v}$とベクトル$\overrightarrow{\mathrm{OP}}$のなす角$\theta$は一定であることを示し,$\theta$を求めよ.
山口大学 国立 山口大学 2010年 第3問
$A,\ A^\prime$をそれぞれ座標平面上の点$(\alpha \cos \theta,\ \alpha \sin \theta)$,$(-\alpha \cos \theta,\ -\alpha \sin \theta)$とし,$f$を行列
\[ \biggl( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \biggr) \]
の表す1次変換とする.$\displaystyle \alpha= \left( \frac{45}{4} \right)^{\frac{1}{6}},\ r=\left( \frac{10}{3} \right)^{\frac{1}{6}},\ \theta=\frac{\pi}{6}$とするとき,次の問いに答えなさい.

(1)2点A,A$^{\prime}$の逆変換$f^{-1}$による像を焦点とし,焦点からの距離の差が2に等しい双曲線$C_1$の方程式を求めなさい.
(2)2点A,A$^\prime$の合成関数$f \circ f$による像を焦点とし,直線$x+2y=0$を漸近線にもつ双曲線$C_2$の方程式を求めなさい.
(3)双曲線$C_1$と$C_2$により囲まれた部分を$x$軸の周りに1回転させてできる立体の体積を求めなさい.
岐阜大学 国立 岐阜大学 2010年 第1問
$b$と$d$で実数の定数を表す.次の条件$(*)$を考える.
\[ (*) \quad \text{すべての正の実数}x \text{に対して} \frac{x+b}{x^3+1}< \frac{x+2b+d}{x^3+2} \text{である.} \]
以下の問に答えよ.

(1)$b+d>0$は,$(*)$が成立するための必要条件であることを示せ.
(2)$d>0$は,$(*)$が成立するための必要条件であることを示せ.
(3)$d$を任意の正の実数とする.$(*)$が成立するための必要十分条件として,$b$が満たすべき範囲を$d$を用いて表せ.
岐阜大学 国立 岐阜大学 2010年 第4問
次の設問(\,I\,)と(\,II\,)に答えよ.

\mon[(\,I\,)] $0< \theta < \pi$かつ$\displaystyle \theta \neq \frac{\pi}{2}$とする.$\tan^2 \theta>\sin \theta$を満たす$\sin \theta$の値の範囲を求めよ.
\mon[(\,II\,)] $a,\ b,\ c,\ R,\ \beta$を$a>0,\ b>0,\ c>1,\ R>0,\ 0 \leqq \beta<2\pi$を満たす実数とする.また,任意の実数$\theta$に対して,次の等式が成立しているとする.
\[ \log_c \frac{a^{\sin \theta}}{b^{\cos \theta}}=R \sin (\theta+\beta) \]

(1)$a,\ b,\ c$を用いて,$R,\ \sin \beta,\ \cos \beta$を表せ.
(2)$a=c,\ b=c^{\sqrt{3}}$が成り立つとき,$\beta$の値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。