タグ「分数」の検索結果

417ページ目:全4648問中4161問~4170問を表示)
富山県立大学 公立 富山県立大学 2011年 第2問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$と辺$\mathrm{BC}$を$t:(1-t)$に内分する点を,それぞれ$\mathrm{D}$と$\mathrm{F}$とする.また,辺$\mathrm{AB}$と辺$\mathrm{CO}$を$\displaystyle \frac{t}{3}:\left( 1-\frac{t}{3} \right)$に内分する点を,それぞれ$\mathrm{E}$と$\mathrm{G}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$としたとき,次の問いに答えよ.

(1)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ t$を用いて,$\overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OE}}$,$\overrightarrow{\mathrm{OF}}$,$\overrightarrow{\mathrm{OG}}$を表せ.
(2)$\displaystyle t=\frac{3}{4}$のとき,$4$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$が同一平面上に存在することを示せ.
(3)$(2)$のとき,線分$\mathrm{DF}$と線分$\mathrm{EG}$の交点を$\mathrm{H}$とする.$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて$\overrightarrow{\mathrm{OH}}$を表せ.
岐阜薬科大学 公立 岐阜薬科大学 2011年 第1問
$xy$平面上にある長方形$\mathrm{OPRS}$を底面とし,三角形$\mathrm{OST}$,三角形$\mathrm{PRQ}$,四角形$\mathrm{OPQT}$,四角形$\mathrm{RSTQ}$を側面とする五面体$\mathrm{OPQRST}$がある.五面体$\mathrm{OPQRST}$が$\mathrm{OP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{ST}=\mathrm{TO}=1$,$\angle \mathrm{TOP}=\angle \mathrm{OPQ}=\angle \mathrm{PQR}=\angle \mathrm{QRS}=\angle \mathrm{RST}=\angle \mathrm{STO}=\theta (90^\circ<\theta<120^\circ)$をみたしているとき,次の問いに答えよ.ただし,$2$点$\mathrm{O}$,$\mathrm{P}$の座標をそれぞれ$(0,\ 0,\ 0)$,$(1,\ 0,\ 0)$とし,$\displaystyle \sin \frac{\theta}{2}=a$とする.

(1)辺$\mathrm{OS}$の長さを$a$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$a$を用いて表せ.ただし,点$\mathrm{Q}$の$y$座標は正とする.
(3)五面体$\mathrm{OPQRST}$の体積$V$を$a$を用いて表せ.
岐阜薬科大学 公立 岐阜薬科大学 2011年 第3問
放物線と直線に関して,以下の問いに答えよ.

(1)放物線$y=x^2$と直線$y=k (k>0)$で囲まれた部分の面積$S(k)$を$k$を用いて表せ.
(2)放物線$y=1-x^2$と$x$軸とで囲まれた部分を直線$\displaystyle y=a \left( 0<a<\frac{1}{2} \right)$を折り目として折り返す.

(i) 重なっていない部分の面積$S$を$a$を用いて表せ.
(ii) 重なっていない部分のうちで,$x$軸の下側にある部分の面積を$S^\prime$とする.$S=2S^\prime$となる$a$の値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2011年 第6問
関数$\displaystyle f(x)=\frac{(\log x)^n}{x}$について,次の問いに答えよ.ただし,$n$は自然数とする.

(1)関数$f(x)$の増減,極値を調べよ.
(2)$n=3$のとき,関数$f(x)$の曲線の凹凸を調べ,そのグラフをかけ.
島根県立大学 公立 島根県立大学 2011年 第1問
次の問いに答えよ.

(1)$f(x)=x^2+bx+c$,$g(x)=x^2+(b+2)x+c$とする.$f(2011)=0$かつ$g(2010)=-1$のとき,$b$と$c$の値を求めよ.
(2)方程式$3^{2x}-2 \cdot 3^{x+1}=27$を解け.
(3)$\displaystyle \sin \alpha=\frac{1}{3},\ \cos \beta=-\frac{1}{2}$のとき,$\sin (\alpha+\beta)$,$\cos (\alpha-\beta)$,$\tan (\alpha-\beta)$の値を求めよ.ただし,$\displaystyle 0<\alpha<\frac{\pi}{2}$,$\displaystyle \frac{\pi}{2}<\beta<\pi$とする.
(4)多項式$P(x)$を$(x-5)$,$(x-7)$で割った余りがそれぞれ$3,\ 4$である.このとき,$P(x)$を$(x-5)(x-7)$で割った余りを求めよ.
島根県立大学 公立 島根県立大学 2011年 第2問
$\displaystyle \frac{x+y}{5}=\frac{y+3z}{11}=\frac{5z-3x}{8} \neq 0$のとき,次の問いに答えよ.

(1)$x:y:z$の比を求めよ.

(2)$\displaystyle \frac{-3x^3+(9y+z)x^2-3y(z+2y)x+2y^2z}{x^3-x^2y-xz^2+yz^2}$の値を求めよ.

(3)$x,\ y,\ z$を$3$辺とする三角形の最大角の大きさを求めよ.
横浜市立大学 公立 横浜市立大学 2011年 第1問
以下の問いに答えよ.

(1)関数
\[ f(x)=x \sin^2 x \quad (0 \leqq x \leqq \pi) \]
の最大値を与える$x$を$\alpha$とするとき,$f(\alpha)$を$\alpha$の分数式で表すと$[$1$]$となる.
(2)多項式
\[ a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2 \]
を因数分解すると$[$2$]$となる.
(3)$N$を与えられた自然数とし,$f(x)$および$g(x)$を区間$(-\infty,\ \infty)$で$N$回以上微分可能な関数とする.$f(x)$と$g(x)$から定まる関数を次のように定義する.$t$を与えられた実数として,
\[ \begin{array}{lll}
(f *_t g)(x) &=& \sum_{k=0}^N \displaystyle\frac{t^k}{2^k k!} f^{(k)}(x)g^{(k)}(x) \\
&=& \displaystyle f(x)g(x)+\frac{t}{2}f^\prime(x)g^\prime(x)+\cdots +\frac{t^N}{2^N N!} f^{(N)}(x)g^{(N)}(x)
\end{array} \]
とおく.ここに,$f^{(k)}(x)$は$f(x)$の第$k$次導関数である($g^{(k)}(x)$も同様である).$a$を実数,$n$を$N$以下の自然数とする.$f(x)=e^{2ax}$,$g(x)=x^n$にたいし,二項定理を用いて$(f *_t g)(x)$を計算すると$[$3$]$となる.
(4)関係式
\[ f(x)+\int_0^x f(t)e^{x-t} \, dt=\sin x \]
をみたす微分可能な関数$f(x)$を考える.$f(x)$の導関数$f^\prime(x)$を求めると,$f^\prime(x)=[$4$]$となる.$f(0)=[$5$]$であるから$f(x)=[$6$]$となる.
横浜市立大学 公立 横浜市立大学 2011年 第2問
行列$A$と$E$を
\setstretch{2}
\[ A=\left( \begin{array}{rr}
\displaystyle\frac{2}{3} & -\displaystyle\frac{1}{2} \\
\displaystyle\frac{1}{2} & \displaystyle\frac{2}{3}
\end{array} \right),\quad E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right) \]
\setstretch{1.4}
とする.以下の問いに答えよ.

(1)行列$(E-A)^{-1}$を求めよ.
(2)零ベクトルでないベクトル$\left( \begin{array}{c}
x \\
y
\end{array} \right)$に対して
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
とおくとき,
\[ \sqrt{X^2+Y^2}=r \sqrt{x^2+y^2} \]
をみたす$r$を求めよ.
(3)ベクトル$\left( \begin{array}{c}
x_0 \\
y_0
\end{array} \right)$が与えられたとき,ベクトル$\left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)$を次のように定める.
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A \left( \begin{array}{c}
x_{n-1} \\
y_{n-1}
\end{array} \right)+\left( \begin{array}{c}
3 \\
2
\end{array} \right) \qquad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$\displaystyle \lim_{n \to \infty} x_n$と$\displaystyle \lim_{n \to \infty} y_n$を求めよ.
横浜市立大学 公立 横浜市立大学 2011年 第3問
平面上の点$\mathrm{A}$を中心とする半径$a$の円から,中心角が${60}^\circ$で$\mathrm{AP}=\mathrm{AQ}=a$となる扇形$\mathrm{APQ}$を切り取る.つぎに線分$\mathrm{AP}$と$\mathrm{AQ}$を貼り合わせて,$\mathrm{A}$を頂点とする直円錐$K$を作り,これを点$\mathrm{O}$を原点とする座標空間におく.

$\mathrm{A}$,$\mathrm{P}$はそれぞれ$z$軸,$x$軸上の正の位置にとり,扇形$\mathrm{APQ}$の弧$\mathrm{PQ}$は$xy$平面上の$\mathrm{O}$を中心とする円$S$になるようにする.
また弦$\mathrm{PQ}$から定まる$K$の側面上の曲線を$C$とする.
(図は省略)
以下の問いに答えよ.

(1)$S$の半径を$b$とする.$S$上の点$\mathrm{R}(b \cos \theta,\ b \sin \theta,\ 0) (0 \leqq \theta \leqq 2\pi)$に対し,$K$上の母線$\mathrm{AR}$と$C$の交点を$\mathrm{M}$とする.$b$と線分$\mathrm{AM}$の長さを$a$と$\theta$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OM}}$を$xy$平面に正射影したベクトルの長さを$r$とする.$r$を$a$と$\theta$を用いて表し,定積分
\[ \int_0^{2\pi} \frac{1}{2} \{r(\theta)\}^2 \, d\theta \]
を求めよ.ただし,ベクトル$\overrightarrow{\mathrm{OE}}=(a_1,\ a_2,\ a_3)$を$xy$平面に{\bf 正射影したベクトル}とは$\overrightarrow{\mathrm{OE}^\prime}=(a_1,\ a_2,\ 0)$のことである.
福岡女子大学 公立 福岡女子大学 2011年 第2問
$\displaystyle f(x)=x^3-3ax^2-3bx+c,\ H(x)=\int f(x) \, dx$とおく.また,方程式$f^\prime(x)=0$は異なる解を持ち,$x=-1$はその$1$つの解とする.次の問に答えなさい.

(1)$f^\prime(x)=0$を満たすもう$1$つの解を$a$を用いて表しなさい.
(2)$\displaystyle a \leqq -\frac{1}{2}$のとき,$H(x)$の値が$x>0$でつねに増加するための$c$の値の範囲を求めなさい.
(3)$\displaystyle a>-\frac{1}{2}$のとき,$H(x)$の値が$x>0$でつねに増加するための$c$の値の範囲を求めなさい.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。