タグ「分数」の検索結果

412ページ目:全4648問中4111問~4120問を表示)
高崎経済大学 公立 高崎経済大学 2011年 第2問
数列$\{a_n\}$が$a_1 = 2,\ a_{n+1} −2a_n +a_na_{n+1}=0$を満たしている.以下の問に答えよ.

(1)すべての自然数$n$について$a_n>0$であることを示せ.
(2)$\displaystyle b_n=\frac{1}{a_n}$とするとき,$b_n$と$b_{n+1}$の関係を式で表せ.
(3)一般項$a_n$を求めよ.
高崎経済大学 公立 高崎経済大学 2011年 第3問
放物線$y=-(x-2)^2+1$上に点Pがある.点Pの$x$座標を$a$とし,$\displaystyle \frac{1}{2} \leqq a \leqq \frac{3}{2}$とする.以下の問に答えよ.

(1)放物線上の点Pにおける接線の方程式を求めよ.
(2)点Pから$y$軸に下ろした垂線の足を点Qとする.また,(1)で求めた接線と$y$軸の交点を点Rとする.$\triangle$PQRの面積$S$を$a$で表せ.点Pから$y$軸に下ろした垂線と$y$軸との交点のことである.
(3)(2)で求めた面積$S$が最大になるときの$a$の値とその面積を求めよ.
岡山県立大学 公立 岡山県立大学 2011年 第2問
数列$\{a_n\}$が,$\displaystyle a_1=\frac{2}{3},\ a_{n+1}=\frac{2-a_n}{3-2a_n} \ (n=1,\ 2,\ 3,\ \cdots)$を満たしている.次の問いに答えよ.

(1)$a_2,\ a_3$を求めよ.
(2)一般項$a_n$を推定し,それが正しいことを数学的帰納法により証明せよ.
(3)$\displaystyle a_{n+1}-a_n<\frac{1}{5000}$を満たす最小の$n$を求めよ.
岡山県立大学 公立 岡山県立大学 2011年 第3問
$a$を実数とする.曲線$\displaystyle y=\frac{1}{4}(x-a)^2$と曲線$y=e^x$の共有点$\mathrm{P}(s,\ t)$において$2$曲線の接線が一致するとき,以下の問いに答えよ.

(1)$a$の値を求めよ.また,そのときの点$\mathrm{P}$における接線の方程式を求めよ.
(2)$x \geqq a$のとき$\displaystyle \frac{(x-a)^2}{e^x}$の最大値を求めよ.
岡山県立大学 公立 岡山県立大学 2011年 第4問
次の定積分を求めよ.

(1)$\displaystyle \int_1^e \frac{\log x}{x\{1+(\log x)^2\}} \; dx$
(2)$\displaystyle \int_0^\pi x^2 \cos nx \; dx \quad (n\text{は自然数})$
(3)$\displaystyle \int_0^1 \cos m\pi x \; \cos n\pi x \; dx \quad (m,\ n \text{は0以上の整数})$
高知工科大学 公立 高知工科大学 2011年 第2問
$\triangle$ABCの頂点を通らない直線$\ell$が,辺AC,辺BCのB方向への延長線,および辺ABと,それぞれ点P,Q,Rで交わり,
\[ \text{AP}:\text{PC}=\alpha:1,\quad \text{CQ}:\text{QB}=\beta:1 \]
であるとする.$\overrightarrow{\mathrm{CA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{CB}}=\overrightarrow{b}$として,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を$\alpha,\ \beta,\ \overrightarrow{a},\ \overrightarrow{b}$で表し,等式$\displaystyle \frac{\text{AP}}{\text{PC}} \cdot \frac{\text{CQ}}{\text{QB}} \cdot \frac{\text{BR}}{\text{RA}}=1$を証明せよ.
(2)$\triangle$QRB,$\triangle$BCR,$\triangle$APRの面積比が$1:2:3$のとき,$\triangle$APRと$\triangle$CPRの面積比を求めよ.
(3)(2)のとき,直線CRと直線AQの交点をDとする.線分の長さの比$\text{AD}:\text{QD}$を求めよ.
高知工科大学 公立 高知工科大学 2011年 第3問
関数$\displaystyle f(x)=\frac{2(\log x)^2-3\log x}{x} \ (x>0)$について,次の各問に答えよ.ただし$\log x$は自然対数である.

(1)方程式$f(x)=0$を解け.
(2)関数$f(x)$の極大値と極小値を求めよ.また,そのときの$x$の値をそれぞれ求めよ.
(3)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ.
高知工科大学 公立 高知工科大学 2011年 第4問
次の各問に答えよ.

(1)$x>0$のとき,不等式$\displaystyle e^x>1+x+\frac{x^2}{2}$が成り立つことを証明せよ.
(2)$\displaystyle \lim_{x \to \infty} xe^{-x}=0$を証明せよ.
(3)関数$y=xe^{-x}$の増減・凹凸を調べ,そのグラフを描け.
(4)$n$を自然数とする.$\displaystyle I_n=\int_0^n xe^{-x}\, dx$を計算し,$\displaystyle \lim_{n \to \infty}I_n$を求めよ.
高知工科大学 公立 高知工科大学 2011年 第3問
0以上の整数$n$に対して
\[ a_n=\int_0^1 e^{-x}x^n \, dx \quad (n=0,\ 1,\ 2,\ \cdots) \]
とおく.ここで$e$は自然対数の底である.次の各問に答えよ.

(1)$a_0$と$a_1$を求めよ.
(2)$a_{n+1}$と$a_n$の間に成り立つ関係式を求めよ.
(3)等式
\[ \frac{a_n}{n!}=1-\frac{1}{e}\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!} \right) \]
が成り立つことを証明せよ.
(4)次式が成り立つことを証明せよ.
\[ \maru{1} \ 0 \leqq a_n \leqq a_0 \qquad \maru{2} \ \lim_{n \to \infty} \left( \frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!} \right)=e \]
広島市立大学 公立 広島市立大学 2011年 第1問
次の問いに答えよ.

(1)$A=\biggl( \begin{array}{cc}
7 & -3 \\
-3 & 1
\end{array} \biggr), B=\biggl( \begin{array}{c}
2 \\
-4
\end{array} \biggr)$とするとき,$A$の逆行列$A^{-1}$と$B$の積$A^{-1}B$を計算せよ.
(2)次の関数の導関数を求めよ.
\[ y=x^{1+\frac{1}{x}} \quad (x>0) \]
(3)次の積分を求めよ.

\mon[(i)] $\displaystyle \int \frac{x^2+1}{x+1} \, dx$
\mon[(ii)] $\displaystyle \int_0^1 \frac{dx}{(x^2+1)^2}$
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。