タグ「分数」の検索結果

408ページ目:全4648問中4071問~4080問を表示)
神戸薬科大学 私立 神戸薬科大学 2011年 第2問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)$\displaystyle S=\sum_{n=1}^{18} (-1)^n \log_{10}(n+1)(n+2)$の値を計算すると$S=[ ]$である.
(2)$a>0,\ b>0,\ a+b=1$のとき,$\displaystyle \left( 2+\frac{1}{a} \right) \left( 2+\frac{1}{b} \right)$の最小値は$[ ]$である.
(3)$2$次方程式$x^2+ax+a^2-4=0$が正の解と負の解を$1$つずつ持つときの定数$a$の値の範囲は,$[ ]<a<[ ]$である.
(4)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$S_n=2a_n+2n-5$で与えられている.このとき,$a_1=[ ]$である.また,$a_{n+1}$を$a_n$を用いて表すと$a_{n+1}=[ ]$である.
神戸薬科大学 私立 神戸薬科大学 2011年 第3問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)平面上にサイコロがある.サイコロの$4$つの側面のいずれかの面を$\displaystyle \frac{1}{4}$の確率で底面にする操作を考える.$1$の目が出ているサイコロに対してこの操作を$n$回繰り返す.このとき,以下の問に答えよ.ただし,$1$の目の裏面は$6$の目である.

(i) この操作を$n$回行ったとき,$1$か$6$の目が出ている確率を$P_n$とする.
$P_1=[ ]$,$P_2=[ ]$,$P_3=[ ]$である.
(ii) $P_n$を$n$の式で表すと,$P_n=[ ]$である.

(2)\begin{mawarikomi}{35mm}{
(図は省略)
}
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{AB}=1$,$\angle \mathrm{OAB}={90}^\circ$となる直角二等辺三角形である.$\angle \mathrm{BOA}$の二等分線上の点$\mathrm{C}$を$\mathrm{BC} \perp \mathrm{OC}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,以下の問に答えよ.

(i) $\overrightarrow{\mathrm{OC}}=[ ] \overrightarrow{a}+[ ] \overrightarrow{b}$である.
(ii) $\mathrm{AC}$の長さの$2$乗を求めると,$\mathrm{AC}^2=[ ]$である.

\end{mawarikomi}
関西学院大学 私立 関西学院大学 2011年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)条件$\displaystyle a_1=-\frac{5}{6}$,$6a_{n+1}-3a_n+4=0$によって定められる数列$\{a_n\}$について考える.この漸化式は$a_{n+1}+[$*$]=[ ](a_n+[$*$])$と変形できる.したがって,一般項は$a_n=[ ]$である.
(2)方程式$(x+1)(x-2)(x+3)(x-4)=-24$について,$X=x^2-x$とおくと,$X$の$2$次方程式$[ ]=0$を得る.その解は$X=[$**$],\ [$***$]$(ただし,$[$**$]<[$***$]$)である.元の方程式の最大の解は$x=[ ]$である.
(3)箱$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$があり,それぞれに$4$個のボールが入っている.各箱のボールには,$1$から$4$までの番号がつけられている.箱$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$からボールを$1$個ずつ取り出し,出た数をそれぞれ$a,\ b,\ c,\ d$とする.$a,\ b,\ c,\ d$の最大の数が$3$以下である場合は$[ ]$通りあり,最大の数が$4$である場合は$[ ]$通りある.また,$a,\ b,\ c,\ d$について,$a+b+c+d=15$となる場合は$[ ]$通りある.
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
津田塾大学 私立 津田塾大学 2011年 第2問
単位円上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ$(-1,\ 0)$,$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$,$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$とする.単位円上の点$\mathrm{P}$が
\[ \triangle \mathrm{ABC} \text{の面積}:\triangle \mathrm{ABP} \text{の面積}=1:1+\sqrt{3} \]
をみたすとき,点$\mathrm{P}$の座標を求めよ.
津田塾大学 私立 津田塾大学 2011年 第3問
放物線$y=x^2$を$C$とし,直線$y=mx+n$を$\ell$とする.$C$と$\ell$は,異なる$2$点$(\alpha,\ \alpha^2)$,$(\beta,\ \beta^2)$で交わっている.ただし,$\alpha<\beta$とする.

(1)$C$と$\ell$で囲まれた部分の面積を$\alpha,\ \beta$で表せ.
(2)$C$と$\ell$で囲まれた部分の面積が$\displaystyle \frac{9}{2}$であり,かつ$m \geqq 0$,$n \geqq 0$であるような整数の組$(m,\ n)$をすべて求めよ.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle f(x)=e^{-x}+\int_0^x e^{-(x-t)} \sin t \, dt$とする.このとき,$f^\prime(x)+f(x)=\sin x$が成り立つことを示せ.
(2)座標空間において,原点$\mathrm{O}$と点$\mathrm{A}(1,\ 1,\ 1)$を通る直線を$\ell$とし,原点$\mathrm{O}$を通り直線$\ell$とのなす角が$\displaystyle \frac{\pi}{3}$である直線の$1$つを$m$とする.直線$m$を直線$\ell$のまわりに$1$回転してできる図形を$S$とする.点$\mathrm{P}(x,\ y,\ z)$が$S$上にあるならば,
\[ x^2+y^2+z^2+8xy+8yz+8zx=0 \]
が成り立つことを示せ.
津田塾大学 私立 津田塾大学 2011年 第2問
自然数$n$に対し$\displaystyle S_n=\sum_{k=1}^n \frac{1}{2^k} \sin \left( \frac{k^2 \pi}{4} \right)$と定める.以下の問いに答えよ.

(1)$S_4$を求めよ.
(2)$n$が奇数ならば,$S_{n+1}=S_n$が成り立つことを示せ.
(3)$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問に答えよ.

(1)$x>0$のとき,関数$\displaystyle f(x)=x^2+x+\frac{2}{x}+\frac{1}{2x^2}$の最小値を求めよ.
(2)$1$から$10$までの番号が書かれた$10$枚のカードから同時に$3$枚を取り出したとき,カードに書かれた$3$つの数字の積が$3$の倍数になる確率を求めよ.
(3)三角形$\mathrm{ABC}$で$\angle \mathrm{A}={75}^\circ$,$\mathrm{BC}=\sqrt{2}$,$\mathrm{AB}=\sqrt{3}-1$のとき,$\angle \mathrm{C}$,$\mathrm{AC}$を求めよ.
津田塾大学 私立 津田塾大学 2011年 第3問
次の問いに答えよ.

(1)座標平面上の点$(x,\ y)$と点$(a,\ b)$とを結ぶ線分の傾きを求めよ.ただし,$x \neq a$とする.
(2)次の連立不等式の表す領域$D$を図示せよ.$x^2+y^2 \leqq 1,\ y \geqq x^2-1$
(3)$(2)$の領域$D$内の点$(x,\ y)$に対して$\displaystyle \frac{4y-7}{x-3}$が最大となる$(x,\ y)$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。