タグ「分数」の検索結果

405ページ目:全4648問中4041問~4050問を表示)
北海道薬科大学 私立 北海道薬科大学 2011年 第4問
$2$つの放物線
\[ C_1:y=x^2-6x+12,\quad C_2:y=x^2+6x+8 \]
の頂点同士を結ぶ直線を$\ell$とする.

(1)$C_1$の頂点の座標は$([ア],\ [イ])$であり,$C_2$の頂点の座標は$(-[ウ],\ -[エ])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{[オ]}{[カ]}x+[キ]$となる.
(3)$C_1$と$\ell$との交点の$x$座標は$[ク]$,$\displaystyle \frac{[ケコ]}{[サ]}$,$C_2$と$\ell$との交点の$x$座標は$-[シ]$,$\displaystyle -\frac{[ス]}{[セ]}$である.$C_1$と$\ell$とで囲まれた部分の面積と,$C_2$と$\ell$とで囲まれた部分の面積との和は$\displaystyle \frac{[ソ]}{[タチ]}$となる.
東北工業大学 私立 東北工業大学 2011年 第2問
三角形$\mathrm{ABC}$があり,各辺の長さは$\mathrm{BC}=2 \sqrt{13}$,$\mathrm{CA}=2 \sqrt{10}$,$\mathrm{AB}=2 \sqrt{5}$である.このとき,

(1)$\displaystyle \cos A=\frac{\sqrt{[ ]}}{10}$である.
(2)三角形$\mathrm{ABC}$の面積は$[ ]$である.
(3)頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線を引き,この垂線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\angle \mathrm{BAD}=\theta$とすれば,$\displaystyle \sin \theta=\frac{[ ] \sqrt{65}}{65}$である.
(4)辺$\mathrm{BC}$の中点を$\mathrm{E}$とすれば,線分$\mathrm{AE}$の長さは$\sqrt{[ ]}$である.
(5)$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,線分$\mathrm{CF}$の長さは$4 \sqrt{13}-2 \sqrt{[ ]}$である.
東北工業大学 私立 東北工業大学 2011年 第3問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{1}{2} \right)^{\frac{1}{3}} \div \left( \frac{1}{2} \right)^{\frac{1}{2}} \times {2}^{\frac{5}{6}}=[ ]$
(2)$(\log_2 27+5 \log_2 3) \cdot \log_3 2=[ ]$
(3)$16<{4}^{x-1}<8 \cdot {2}^x$を満たす$x$の範囲は$[ ]<x<[ ]$である.
(4)$\log_{\frac{1}{3}}(x-2)+3>0$を満たす$x$の範囲は$2<x<[ ]$である.
東北工業大学 私立 東北工業大学 2011年 第4問
$2$つの放物線$y=x^2-4x+2$と$y=-x^2+6x-6$がある.

(1)これらの放物線の交点の座標は$([ ],\ -1)$と$([ ],\ [ ])$である.
(2)これらの放物線によって囲まれた図形の面積$S_1$は$S_1=[ ]$である.
(3)$x \geqq 0$の範囲で,これらの放物線と$y$軸によって囲まれた図形の面積$S_2$は$\displaystyle S_2=\frac{[ ]}{3}$である.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第2問
中心が$\mathrm{O}$で半径$1$の円上の点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対し
\[ \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+4k \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \quad{(零ベクトル)} \]
を満たす実数$k$が存在するという.このとき,次の問に答えなさい.

(1)特に$k=0$のとき$\mathrm{AB}=[ア]$である.
以下$0<k$とする.
(2)$\angle \mathrm{AOB}=\theta$とおく.$0<\theta<\pi$とするとき,$\displaystyle k=\frac{[イ]}{[ウ]} \cos \frac{\theta}{[エ]}$が成り立つ.
(3)$F=\mathrm{AB}^2+\mathrm{BC}^2+\mathrm{CA}^2$を$k$の式で表すと
\[ F=[オカキ] k^2+[ク] k+[ケ] \]
である.
(4)$F$は$\displaystyle k=\frac{[コ]}{[サ]}$のとき最大値$[シ]$をとる.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第3問
円周を$8$等分する点$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_8$からいくつかの点を無作為に選ぶ.どの点も選ばれる確率は等しいとするとき,次の問に答えなさい.

(1)異なる$2$点を選ぶとき,この$2$点を端点とする線分が円の直径となる確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)異なる$3$点を選ぶとき,この$3$点からなる三角形が直角二等辺三角形となる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)異なる$4$点を選ぶとき,この$4$点からなる四角形が正方形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
(4)異なる$3$点を選ぶとき,この$3$点からなる三角形が二等辺三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(5)異なる$5$点を選ぶとき,この$5$点からなる五角形を$F$とする.残りの$3$点のうち$2$点を端点とする線分がいずれも五角形$F$と交わる確率は$\displaystyle \frac{[コ]}{[サ]}$である.
中央大学 私立 中央大学 2011年 第1問
正の整数$m,\ n$が次の$2$つの条件を満たしている.
\[ (*) \quad \left\{ \begin{array}{l}
n \text{は} m \text{の倍数} \\
\text{等式} \displaystyle\frac{2n}{3}=\frac{n}{m}+1 \text{が成り立つ} \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
このとき,以下の設問に答えよ.

(1)$n$を$3$で割ったときの余りを求めよ.
(2)$(*)$を満たす組$(m,\ n)$をすべて求めよ.
中央大学 私立 中央大学 2011年 第2問
対数関数
\[ f(x)=\log_2 x,\quad g(x)=\log_{\frac{1}{4}} x \]
に対し,$3$つの不等式
\[ x \geqq 1,\quad y \leqq f(x),\quad y \geqq g(x) \]
によって定められる$xy$平面上の領域を$D$とする.また,$xy$平面上の点$\mathrm{P}(x,\ y)$で$x,\ y$がともに整数であるものを``格子点''と呼ぶ.このとき,以下の設問に答えよ.

(1)領域$D$を図示せよ.
(2)「$D$に属する格子点$\mathrm{P}(x,\ y)$で$x \leqq 8$であるもの」の総数を求めよ.
(3)「$D$に属する格子点$\mathrm{P}(x,\ y)$で$x \leqq 33,\ y \geqq 1$であるもの」の総数を求めよ.
久留米大学 私立 久留米大学 2011年 第2問
次の関係を満たす関数を求めよ.ただし,$n$は$n \geqq 0$である整数とする.

(1)$f_0(x)=\sin x$,$\displaystyle f_{n+1}(x)=\sin x+\int_0^\pi \frac{2t}{\pi^2} f_n(t) \, dt$を満たす関数は$f_n(x)=[$2$]$である.
(2)$f_0(x)=x+1$,$x^2 f_{n+1}(x)=x^3+\int_0^x tf_n(t) \, dt$を満たす関数は$f_n(x)=[$3$]$である.
大同大学 私立 大同大学 2011年 第3問
原点$\mathrm{O}$を中心とする半径$3$の円を$C$とする.点$\mathrm{A}(5 \sqrt{2},\ 2 \sqrt{2})$を通り円$C$に接する直線で傾きが正のものを$\ell$とし,$C$と$\ell$の接点を$\mathrm{P}$とする.

(1)$\mathrm{OA}$,$\mathrm{AP}$を求めよ.
(2)直線$\mathrm{OA}$と$x$軸のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\angle \mathrm{OAP}=\beta$とおく.$\tan \alpha$,$\tan \beta$を求めよ.
(3)$\ell$の傾きを求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。