タグ「分数」の検索結果

395ページ目:全4648問中3941問~3950問を表示)
明治大学 私立 明治大学 2011年 第2問
次の各問の$[ ]$にあてはまる数を記入せよ.

座標空間内に点$\mathrm{P}(s+3,\ 2s-1,\ 2s+1)$と点$\mathrm{Q}(2s+3,\ 1-2s,\ s-1)$がある.ただし,$s$は実数全体を動く.次の問に答えよ.
(1)線分$\mathrm{PQ}$の長さは
\[ \sqrt{[ア] \left( [イ]s^2-[ウ]s+[エ] \right)} \]
であり,$\displaystyle s=\frac{[オ]}{[カ]}$のときに最小値$\sqrt{[キ]}$をとる.

(2)$\mathrm{O}$を原点とし,$\theta=\angle \mathrm{POQ}$とする.$\cos \theta$のとる値の範囲を求めよう.$k=\cos \theta$とおくと
\[ k=\frac{[クケ]s+[コ]}{[サ]s^2+[シ]s+[スセ]} \cdots\cdots (*) \]
である.

(i) $\displaystyle s=-\frac{[コ]}{[クケ]}$のとき$k=0$となる.
(ii) $k \neq 0$のときに$(*)$を満たす実数$s$が存在するための条件は
\[ -\frac{[ソ]}{[タ]} \leqq k \leqq \frac{[チ]}{[ツ]} \]
である.

$(ⅰ),\ (ⅱ)$より$\cos \theta$のとる値の範囲は
\[ -\frac{[ソ]}{[タ]} \leqq \cos \theta \leqq \frac{[チ]}{[ツ]} \]
である.また,$\displaystyle \cos \theta=\frac{[チ]}{[ツ]}$となるのは$\displaystyle s=\frac{[テ]}{[ト]}$のときである.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)放物線$y=x^2+2x$を$x$軸方向に$p$,$y$軸方向に$\displaystyle \frac{1}{2}p^2$だけ平行移動して得られる放物線$C$の方程式を求めると$y=[ア]$である.$C$と直線$y=x$が異なる$2$つの点で交わるような$p$の値の範囲を求めると$[イ]$である.
(2)$3$次の整式$F(x)$を考える.$F(x)$の$x^3$の項の係数は$1$であり,$xF(x)$を$x^2-3x+2$で割った余りは$2x$である.このとき,$F(2)$の値は$F(2)=[ウ]$であり,さらに,$F(-1)=2$であるとき,$F(-2)$の値は$F(-2)=[エ]$である.
(3)$\triangle \mathrm{ABC}$において$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さがそれぞれ$2,\ 3,\ x$であるとする.このとき,$\triangle \mathrm{ABC}$の面積が最大になるような$x$の値を求めると$x=[オ]$である.また,$\angle \mathrm{ACB}$が最大になるような$x$の値を求めると$x=[カ]$である.
(4)$0<\alpha<\beta<\pi$のとき,座標平面上で,$2$点$\mathrm{A}(2 \cos \alpha,\ 2 \sin \alpha)$,$\mathrm{B}(2 \cos \alpha+\cos \beta,\ 2 \sin \alpha+\sin \beta)$と原点$\mathrm{O}$を頂点とする$\triangle \mathrm{OAB}$を考える.$\mathrm{B}$の座標が$(1,\ 1)$のとき,$\cos \angle \mathrm{AOB}$の値は$\cos \angle \mathrm{AOB}=[キ]$であり,$\cos \alpha$の値は$\cos \alpha=[ク]$である.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)循環小数$1. \dot{4} \dot{6}$を分数で表すと$[ア]$である.$1. \dot{4} \dot{6}+2. \dot{7}$を循環小数で表すと$[イ]$となる.
(2)$f(\theta)=\sqrt{3} \sin 2\theta-\cos 2\theta+\sqrt{3} \sin \theta+\cos \theta$とする.$x=\sqrt{3} \sin \theta+\cos \theta$として,$f(\theta)$を$x$で表すと$[ウ]$となる.$0 \leqq \theta \leqq \pi$であるとき,関数$f(\theta)$の最大値は$[エ]$である.
(3)$\displaystyle \left( \frac{4}{3} \right)^n$の整数部分が$10$桁になるような整数$n$は$[オ]$個ある.$n$がその中で$4$番目に小さい整数であるとき,$\displaystyle \left( \frac{4}{3} \right)^n$の最高位の数字は$[カ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(4)円$(x-2)^2+y^2=1$と直線$y=mx$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$m$の値の範囲は$[キ]$であり,原点を$\mathrm{O}$とするとき,線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの積は$[ク]$である.
(5)図のように半径$r$の半球面に円柱が内接している.円柱の体積が最大になるのは円柱の高さが$[ケ]$のときであり,その円柱の体積は$[コ]$である.
(図は省略)
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)関数$\displaystyle f(x)=\left( \frac{1}{9} \right)^x-12 \left( \frac{1}{3} \right)^x+40 (-3 \leqq x \leqq -1)$を考える.$-3 \leqq x \leqq -1$のとき,$\displaystyle t=\left( \frac{1}{3} \right)^x$のとりうる値の範囲を求めると$[ア]$である.また,$f(x)$の最小値$m$とそのときの$x$の値を求めると$(m,\ x)=[イ]$である.
(2)$0 \leqq \theta < 2\pi$とする.方程式$\cos 2\theta+3 \cos \theta-1=0$を解くと$\theta=[ウ]$である.また,方程式$\displaystyle \log_3 (\sqrt{3} \tan \theta+1)+\log_3 (\cos \theta)=\frac{1}{2}$を解くと$\theta=[エ]$である.
(3)$2x^3-ax^2-2x+a$を因数分解すると$[オ]$である.また,$P(x)=2x^3-ax^2-2x+a$,$Q(x)=-x^2+(2a-1)x+2a$とおくとき,すべての正の$x$について$P(x)-Q(x)>0$が成立するような$a$の値の範囲を求めると$[カ]$である.
(4)四角形$\mathrm{ABCD}$が半径$4$の円に内接し,$\mathrm{AB}=4$,$\mathrm{BC}=4 \sqrt{3}$,$\mathrm{CD}=\sqrt{3} \mathrm{DA}$とする.このとき,$\mathrm{AC}$の長さを求めると$\mathrm{AC}=[キ]$であり,$\mathrm{DA}$の長さを求めると$\mathrm{DA}=[ク]$である.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)$2$次関数$y=x^2+x+k$の$-1 \leqq x \leqq 2$における最大値が$8$であるとき,実数$k$の値は$[ア]$であり,そのときの最小値は$[イ]$である.
(2)$\angle \mathrm{O}$が直角の直角三角形$\mathrm{OAB}$において,$\angle \mathrm{O}$の$2$等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.$\mathrm{OA}=a$,$\mathrm{OB}=b$とするとき,$\mathrm{OC}=[ウ]$であり,$\mathrm{OB}=\mathrm{OC}$のとき,$\tan A$の値は$[エ]$である.
(3)$3$次方程式$x^3+ax-3a=0$のただひとつの整数解が$x=2$であるとき,$a=[オ]$であり,そのときの虚数解は,$x=[カ]$である.
(4)$x$の$2$次式$f(x)$が,$f(-1)=f(2)=0$と$f(3)=-1$を満たすとき,$f^\prime(-1)=[キ]$であり,$\displaystyle \int_0^2 f(x) \, dx=[ク]$である.
(5)$\displaystyle \frac{\pi}{6} \leqq \theta \leqq \frac{5}{6} \pi$のとき,$\displaystyle \sin \left( 2\theta-\frac{\pi}{6} \right)-\cos 2\theta$の最大値は$[ケ]$であり,最小値は$[コ]$である.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)$8^{n-1}<10^{39}<8^n$を満たす自然数$n$の値は$[ア]$である.ただし,$\log_{10}2=0.3010$とする.
(2)$\triangle \mathrm{ABC}$の$3$辺の長さが$a=9$,$b=8$,$c=7$であるとき,$\sin A=[イ]$であり,この三角形の面積は$[ウ]$である.
(3)$2$次方程式$x^2+kx+3=0$の$1$つの解が$\displaystyle \alpha=\frac{3-\sqrt{3}i}{2}$であるとき,実数$k$の値は$[エ]$である.また,$\alpha^5+\alpha^3+1$の値を求めると$[オ]$である.
(4)定積分$\displaystyle \int_0^2 |x^2-1| \, dx=[カ]$である.また,関数$f(x)$がすべての実数$x$に対して等式$\displaystyle f(x)=|x^2-1|+\int_0^2 f(t) \, dt$を満たすとき,$f(x)=[キ]$である.
(5)$a,\ b$は実数で,$a<0$とする.$a \leqq x \leqq 3$を定義域とする$2$次関数$\displaystyle y=\frac{1}{2}x^2-x+b$の値域が$-5 \leqq y \leqq 3$であるとき,$a=[ク]$,$b=[ケ]$である.
(6)$a$を$0$でない実数とする.関数$f(x)=x^3-3ax^2-9a^2x+3a$の極小値が負になるとき,$a$のとりうる値の範囲は$[コ]$である.
南山大学 私立 南山大学 2011年 第2問
座標平面上に,放物線$C:y=x^2-2x+1$と点$\mathrm{A}(1,\ -1)$がある.$\mathrm{A}$を通る$C$の接線のうち,傾きが負のものを$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\ell$に関して,$C$上の点$\displaystyle \mathrm{P} \left( \frac{5}{4},\ \frac{1}{16} \right)$と線対称な点を$\mathrm{Q}$とする.$\mathrm{Q}$の座標を求め,$C$,$\ell$,$\mathrm{P}$,$\mathrm{Q}$を同一平面上に図示せよ.
(3)$\ell$に関して,$y$軸と線対称な直線を$m$とする.$m$の方程式を求めよ.
(4)$\ell$に関して,$C$と線対称な曲線を$D$とする.$D$と$y$軸とで囲まれた部分の面積を求めよ.
明治大学 私立 明治大学 2011年 第2問
次のア~へに当てはまる$0$~$9$の数字を解答欄に入れよ.

(1)$0 \leqq x,\ y$かつ$3x+2y=4$を満たす$(x,\ y)$に対して,$\displaystyle x^3+\frac{8}{3}y^3$は,$(x,\ y)=([ア],\ [イ])$のとき,最大値$\displaystyle \frac{[ウエ]}{[オ]}$となり,$\displaystyle (x,\ y)=\left( [カ],\ \frac{[キ]}{[ク]} \right)$のとき,最小値$\displaystyle \frac{[ケ]}{[コ]}$となる.

(2)$0 \leqq y \leqq 4x-2x^2$を満たす$(x,\ y)$にたいして,$z=4x^2+2xy-8x$の最大値と最小値を考える.条件から考える$x$の範囲は,$[サ] \leqq x \leqq [シ]$である.この範囲の$x$を$1$つ固定して,$z$の値を考えると,$z$は,$y$についての$1$次式だから,固定された$x$にたいして,$z$は$y=[ス]x-[セ]x^2$のとき,最も大きく$z=-[ソ]x^3+[タチ]x^2-[ツ]x$となる.従って,考える範囲の$(x,\ y)$にたいしては,$\displaystyle (x,\ y)=\left( [テ]+\frac{\sqrt{[ト]}}{[ナ]},\ \frac{[ニ]}{[ヌ]} \right)$のとき,$z$は最大値$\displaystyle \frac{[ネ] \sqrt{[ノ]}}{[ハ]}$となる.同様のやり方で最小値をもとめると,$(x,\ y)=([ヒ],\ [フ])$のとき,$z$は最小値$-[ヘ]$となる.
甲南大学 私立 甲南大学 2011年 第3問
$a$は実数とする.多項式$f(x),\ g(x)$が
\[ f(x)=ax^2+x+\int_0^1 g(t) \, dt,\quad g(x)=-x^2+2x+\int_{-1}^1 f(t) \, dt \]
を満たすとき,以下の問いに答えよ.

(1)$\displaystyle \int_0^1 g(t) \, dt,\ \int_{-1}^1 f(t) \, dt$の値を$a$を用いて表せ.
(2)方程式$f(x)=g(x)$が実数解をもつときの$a$の値の範囲を求めよ.
(3)$\displaystyle g \left( \frac{2}{3} \right)=0$のとき,$2$つの関数$y=f(x)$,$y=g(x)$のグラフで囲まれる部分の面積を求めよ.
南山大学 私立 南山大学 2011年 第2問
曲線$\displaystyle C:y=\frac{e^{a(x+2)}}{a} (a>0)$と原点$\mathrm{O}$から$C$に引いた接線$\ell$を考える.

(1)$\ell$の方程式を求めよ.
(2)$C$と$\ell$と$y$軸とで囲まれた部分の面積$S$を$a$を用いて表せ.
(3)(2)の$S$について,$S$を最小にする$a$の値と$S$の最小値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。