タグ「分数」の検索結果

39ページ目:全4648問中381問~390問を表示)
早稲田大学 私立 早稲田大学 2016年 第4問
$f(x)$を
\[ f(x)=\int_0^x |t-2| \, dt \]
とする.ただし$x \geqq 0$とする.

関数$y=f(x)$のグラフと$x$軸,$x=1$,$x=4$で囲まれる部分の面積は$\displaystyle \frac{[ナ]}{[ニ]}$である.
早稲田大学 私立 早稲田大学 2016年 第2問
三角形$\mathrm{ABC}$に対して,ベクトル$\overrightarrow{p},\ \overrightarrow{q}$を
\[ \overrightarrow{p}=(\sin A,\ \sin B),\quad \overrightarrow{q}=(\cos B,\ \cos A) \]
とするとき
\[ \overrightarrow{p} \cdot \overrightarrow{q}=\sin 2C \]
が成り立つ.以下の問に答えよ.


(1)角$C$の大きさは$\displaystyle \frac{[エ]}{[オ]} \pi$である.

(2)$\sin A,\ \sin C,\ \sin B$はこの順で等差数列をなし,かつ,
\[ \overrightarrow{\mathrm{CA}} \cdot (\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{AC}})=32 \]
であるとき,辺$\mathrm{AB}$の長さは$[カ]$である.
早稲田大学 私立 早稲田大学 2016年 第4問
$xy$平面上の原点を中心とする単位円を底面とし,点$\mathrm{P}(t,\ 0,\ 1)$を頂点とする円錐を$\mathrm{K}$とする.$t$が$-1 \leqq t \leqq 1$の範囲を動くとき,円錐$\mathrm{K}$の表面および内部が通過する部分の体積は$\displaystyle \frac{\pi+[ナ]}{[ニ]}$である.
早稲田大学 私立 早稲田大学 2016年 第1問
以下の問に答えよ.

(1)それぞれ在庫が$3$個以上ある$5$種類の商品の中から,$3$個の商品を選ぶ選び方は$[ア]$通りである.
(2)$3$つの引き出し$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.
引き出し$\mathrm{A}$には商品「メガネ」が$3$個と商品「サングラス」が$2$個,引き出し$\mathrm{B}$には商品「メガネ」が$2$個と商品「サングラス」が$5$個入っている.引き出し$\mathrm{C}$には何も入っていない.
いま引き出し$\mathrm{A}$,$\mathrm{B}$から,それぞれ$1$個ずつ無作為に商品を取り出し,引き出し$\mathrm{C}$に入れた.
その後,引き出し$\mathrm{C}$から無作為に取り出した商品が「メガネ」であったとき,この商品が引き出し$\mathrm{A}$から取り出されたものである確率は$\displaystyle \frac{[イ]}{[ウ]}$である.
早稲田大学 私立 早稲田大学 2016年 第3問
曲線$C:y=x^2$上の点を$\mathrm{P}$とする.ただし$\mathrm{P}$の$x$座標は正とする.点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{P}$を通り$\ell$に垂直な直線を$m$とする.直線$m$と曲線$C$が$\mathrm{P}$とは異なる交点をもつとき,その点を$\mathrm{Q}$とする.点$\mathrm{P}$が曲線$C$上を動くとき,以下の問に答えよ.

(1)点$\mathrm{Q}$における$C$の接線を$n$とし,$\ell$と$n$との交点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を$(p,\ q)$とするとき
\[ q=\frac{[キ]}{[ク]p^2}+\frac{[ケ]}{[コ]} \]
が成り立つ.
(2)曲線$C$と線分$\mathrm{PQ}$で囲まれる部分の面積の最小値は$\displaystyle \frac{[サ]}{[シ]}$であり,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標は
\[ \mathrm{P} \left( \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right),\quad \mathrm{Q} \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right) \]
である.
早稲田大学 私立 早稲田大学 2016年 第1問
以下の問に答えよ.

(1)それぞれ在庫が$3$個以上ある$5$種類の商品の中から,$3$個の商品を選ぶ選び方は$[ア]$通りである.
(2)$3$つの引き出し$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.
引き出し$\mathrm{A}$には商品「メガネ」が$3$個と商品「サングラス」が$2$個,引き出し$\mathrm{B}$には商品「メガネ」が$2$個と商品「サングラス」が$5$個入っている.引き出し$\mathrm{C}$には何も入っていない.
いま引き出し$\mathrm{A}$,$\mathrm{B}$から,それぞれ$1$個ずつ無作為に商品を取り出し,引き出し$\mathrm{C}$に入れた.
その後,引き出し$\mathrm{C}$から無作為に取り出した商品が「メガネ」であったとき,この商品が引き出し$\mathrm{A}$から取り出されたものである確率は$\displaystyle \frac{[イ]}{[ウ]}$である.
早稲田大学 私立 早稲田大学 2016年 第3問
曲線$C:y=x^2$上の点を$\mathrm{P}$とする.ただし$\mathrm{P}$の$x$座標は正とする.点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{P}$を通り$\ell$に垂直な直線を$m$とする.直線$m$と曲線$C$が$\mathrm{P}$とは異なる交点をもつとき,その点を$\mathrm{Q}$とする.点$\mathrm{P}$が曲線$C$上を動くとき,以下の問に答えよ.

(1)点$\mathrm{Q}$における$C$の接線を$n$とし,$\ell$と$n$との交点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を$(p,\ q)$とするとき
\[ q=\frac{[キ]}{[ク]p^2}+\frac{[ケ]}{[コ]} \]
が成り立つ.
(2)曲線$C$と線分$\mathrm{PQ}$で囲まれる部分の面積の最小値は$\displaystyle \frac{[サ]}{[シ]}$であり,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標は
\[ \mathrm{P} \left( \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right),\quad \mathrm{Q} \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right) \]
である.
早稲田大学 私立 早稲田大学 2016年 第5問
複素数$z_1,\ z_2,\ z_3$を表す複素数平面上の点を,それぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=1:\sqrt{3}:2$の三角形を作るとき
\[ \frac{z_3-z_1}{z_2-z_1}=[ヌ] \pm \sqrt{[ネ]}i \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$の頂点上に置かれた点$\mathrm{P}$に対する次の操作$\mathrm{T}$を考える.
\begin{waku}[操作$\mathrm{T}$]


\mon[$(\mathrm{T}1)$] 点$\mathrm{P}$が頂点$\mathrm{A}$上に置かれているときは,確率$\displaystyle \frac{1}{2}$でそのままにしておき,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{B}$上に移す.
\mon[$(\mathrm{T}2)$] 点$\mathrm{P}$が頂点$\mathrm{B}$上に置かれているときは,確率$\displaystyle \frac{1}{2}$でそのままにしておき,確率$\displaystyle \frac{1}{2}$で頂点$\mathrm{C}$上に移す.
\mon[$(\mathrm{T}3)$] 点$\mathrm{P}$が頂点$\mathrm{C}$上に置かれているときは,必ず頂点$\mathrm{A}$上に移す.

\end{waku}

以下$n,\ m$を自然数とし,点$\mathrm{P}$を頂点$\mathrm{A}$上に置いて,操作$\mathrm{T}$を繰り返し行う.操作$\mathrm{T}$を$n$回繰り返し終えたとき,点$\mathrm{P}$が頂点$\mathrm{A}$上に置かれている確率を$a_n$,頂点$\mathrm{B}$上に置かれている確率を$b_n$,頂点$\mathrm{C}$上に置かれている確率を$c_n$とする.

(1)$n \geqq 2$のとき$a_n,\ b_n,\ c_n$を$a_{n-1},\ b_{n-1},\ c_{n-1}$で表すと
\[ \left\{ \begin{array}{l}
a_n=[あ]a_{n-1}+[い]c_{n-1} \phantom{\frac{[ ]}{[ ]}} \\
b_n=[う]a_{n-1}+[え]b_{n-1} \phantom{\frac{1}{1}} \\
c_n=[お]b_{n-1}+[か]c_{n-1} \phantom{\frac{[ ]}{[ ]}} \\
\end{array} \right. \]
である.
(2)$(1)$より$a_n,\ b_n$を求めると,$a_{2m-1}=[き]$,$b_{2m-1}=[く]$であり,$a_{2m}=[け]$,$b_{2m}=[こ]$である.
(3)操作$\mathrm{T}$を$n$回繰り返し終えたとき初めて点$\mathrm{P}$が頂点$\mathrm{C}$上に置かれる確率を$d_n$とすると,$d_n=[さ]$である.
(4)操作$\mathrm{T}$を$n$回繰り返し終えたとき点$\mathrm{P}$が頂点$\mathrm{A}$または$\mathrm{B}$の上に置かれ,かつそれまでに$1$回だけ頂点$\mathrm{C}$上に置かれていた確率を$e_n$とすると,$e_n=[し]$である.
早稲田大学 私立 早稲田大学 2016年 第1問
関数$f(x)=|x^2-1|-1$について,次の問に答えよ.

(1)関数$f(x)$の最小値,およびそのときの$x$の値を求めよ.また,曲線$y=f(x)$と$x$軸の共有点の座標を求めよ.
(2)不等式$\displaystyle |x^2-1|<\frac{1}{2}$を解け.
(3)曲線$y=f(x)$上の点$\displaystyle \left( \frac{1}{2},\ f \left( \frac{1}{2} \right) \right)$における接線$\ell$の方程式を求めよ.
(4)曲線$y=f(x)$と接線$\ell$で囲まれた部分の面積$S$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。