タグ「分数」の検索結果

386ページ目:全4648問中3851問~3860問を表示)
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第1問
三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$は辺$\mathrm{A}_0 \mathrm{B}_0$の長さが$a$,$\angle \mathrm{A}_0=60^\circ$,$\angle \mathrm{B}_0=90^\circ$の直角三角形であり,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$は辺${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime$の長さが$a$,$\angle {\mathrm{A}_0}^\prime=45^\circ$,$\angle {\mathrm{B}_0}^\prime=90^\circ$の直角三角形である.右図に示すように三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の$3$つの辺上にそれぞれ点$\mathrm{D}_1$,$\mathrm{A}_1$,$\mathrm{B}_1$をとり,正方形$\mathrm{B}_0 \mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$を作る.次に,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}$の$3$つの辺上に点$\mathrm{D}_2$,$\mathrm{A}_2$,$\mathrm{B}_2$をとり,正方形$\mathrm{B}_1 \mathrm{D}_2 \mathrm{A}_2 \mathrm{B}_2$を作る.これを繰り返し,正方形$\mathrm{B}_{j-1} \mathrm{D}_j \mathrm{A}_j \mathrm{B}_j$を作る.その正方形の面積を$S_j$とおく.ただし,$j=1,\ 2,\ \cdots$である.同様な操作で,三角形${\mathrm{A}_0}^\prime {\mathrm{B}_0}^\prime \mathrm{C}^\prime$にも正方形${\mathrm{B}_{j-1}}^\prime {\mathrm{D}_j}^\prime {\mathrm{A}_j}^\prime {\mathrm{B}_j}^\prime$を作り,その正方形の面積を${S_j}^\prime$とおく.これらの図形について以下の問いに答えよ.
(図は省略)

(1)$S_1$を$a$を用いた式で示せ.
(2)$S_j$を$a$と$j$を用いた式で示せ.
(3)三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$内に正方形を描くことを無限に繰り返すとき,正方形の面積の総和$S_\mathrm{T}$が三角形$\mathrm{A}_0 \mathrm{B}_0 \mathrm{C}$の面積$S_0$に占める割合を求めよ.
(4)$\displaystyle c_j=\frac{S_{j+2}}{{S_j}^\prime}$で定義される一般項$c_j$を持つ無限級数は,収束するか発散するかを,根拠を式で示した上で答えよ.
防衛大学校 国立 防衛大学校 2011年 第2問
放物線$C:y=x^2$と直線$L:y=x-1$がある.$L$上の点$\mathrm{A}(a,\ a-1)$から$C$に引いた$2$本の接線の接点を$\mathrm{P}$,$\mathrm{Q}$とし,$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とする.このとき,次の問に答えよ.

(1)$C$上の点$(t,\ t^2)$における接線の方程式を$y=mx+k$とするとき,$m,\ k$を$t$の式で表せ.
(2)$\alpha+\beta$および$\alpha\beta$を$a$の式で表せ.
(3)放物線$C$と$2$本の接線で囲まれた図形の面積を$S(a)$とするとき,$\displaystyle \frac{S(a)}{\beta-\alpha}$を$a$の式で表せ.
防衛大学校 国立 防衛大学校 2011年 第5問
次の問に答えよ.

(1)定積分$\displaystyle I=\int_0^{\frac{\pi}{2}} \cos 2t \cos 4t \, dt$の値を求めよ.
(2)次の等式が$t$についての恒等式となるように,定数$a,\ b,\ c,\ d$の値を定めよ.
\[ \sin^4 t \cos^2 t=a+b \cos 2t+c \cos 4t+d \cos 2t \cos 4t \]
(3)$x=\cos^3 t$とおいて,定積分$\displaystyle J=\int_0^1 (1-x^{\frac{2}{3}})^{\frac{3}{2}} \, dx$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第2問
関数$f(x)=ax^2+bx+c$に対して次の等式が成り立っているとする.
\[ f^\prime(x)=x \int_{-2}^1 f(t) \, dt+\int_0^1 tf^\prime(t) \, dt \]
このとき,次の問に答えよ.ただし,$a,\ b,\ c$は定数で$a>0$とする.

(1)$b,\ c$を$a$で表せ.
(2)曲線$y=f(x)$の$\displaystyle x \geqq -\frac{1}{2}$の部分と$x$軸および$y$軸とで囲まれた図形の面積が$1$のとき,$a$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第5問
数列$\{a_n\}$を$\displaystyle a_n=\frac{1}{n}\sum_{k=1}^n \left( p+\frac{k}{n} \right)^2 (n=1,\ 2,\ \cdots)$で定める.ただし,$p$は実数とする.このとき,次の問に答えよ.

(1)すべての実数$p$に対して,$\displaystyle a_n \geqq \frac{1}{12} \left( 1-\frac{1}{n^2} \right) (n=1,\ 2,\ \cdots)$が成り立つことを示せ.
(2)$\displaystyle p=\frac{5}{3}$のとき,$a_n<5$となる最小の$n$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第1問
行列$A=\left( \begin{array}{cc}
1 & 4 \\
4 & 1
\end{array} \right)$に対し,$A^n=\left( \begin{array}{cc}
a_n & b_n \\
c_n & d_n
\end{array} \right)$,$\displaystyle p_n=\frac{a_n}{c_n} (n=1,\ 2,\ 3,\ \cdots)$とおく.

(1)数学的帰納法を用いて,$a_n=d_n$および$b_n=c_n$が成り立つことを示せ.
(2)$p_{n+1}$を$p_n$を用いて表せ.
(3)$\displaystyle q_n=\frac{1}{p_n-1}$とおくとき,$q_{n+1}$を$q_n$を用いて表せ.
(4)数列$\{p_n\}$の一般項を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第3問
$a$を正の定数とする.関数$f(x)=x(a-x)$,$g(x)=x^2(a-x)$に対し,$2$つの曲線$C_1:y=f(x)$,$C_2:y=g(x)$を考える.以下の問いに答えよ.

ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.

(1)$g(x)$の極値を$a$を用いて表せ.
(2)$0<a \leqq 1$とする.$C_1$と$x$軸で囲まれた図形の面積が,$C_2$と$x$軸で囲まれた図形の面積の$3$倍になるとき,$a$の値を求めよ.
(3)$a>1$とする.$2$曲線$C_1,\ C_2$で囲まれてできる$2$つの図形の面積が等しくなるとき,$a$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第5問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$において,曲線$y=\cos x$と$x$軸および$y$軸で囲まれた図形を$D$とする.

(1)$D$を$x$軸のまわりに$1$回転して得られる回転体の体積$V_1$を求めよ.
(2)不定積分$\displaystyle \int x \cos x \, dx$と$\displaystyle \int x^2 \sin x \, dx$を求めよ.
(3)$D$を$y$軸のまわりに$1$回転して得られる回転体の体積$V_2$を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第4問
表と裏が同じ確率$\displaystyle \frac{1}{2}$で出る$2$つの硬貨$\mathrm{A}$,$\mathrm{B}$がある.$xy$平面上の点$\mathrm{P}$がこの$2$つの硬貨$\mathrm{A}$,$\mathrm{B}$を同時に投げた結果によって移動する.点$\mathrm{P}$は,硬貨$\mathrm{A}$を投げて表が出たら$x$軸方向に$+1$移動し,裏が出たら$x$軸方向に$-1$移動する.また,硬貨$\mathrm{B}$を投げて表が出たら$y$軸方向に$+1$移動し,裏が出たら$y$軸方向に$-1$移動する.点$\mathrm{P}$は最初に原点にあるものとし,このような操作をくり返すとき,次の問に答えよ.

(1)点$\mathrm{P}$が$4$回目の操作で初めて原点にもどる確率を求めよ.
(2)点$\mathrm{P}$が$6$回目の操作で直線$y=4-x$の上にある確率を求めよ.
東京海洋大学 国立 東京海洋大学 2011年 第4問
$a$を定数とする.放物線$C:y=x^2+a$上の点$(t,\ t^2+a) (t>0)$における接線$\ell$が原点を通るとする.直線$\ell$に関して$y$軸と対称な直線を$m$とする.

(1)$a$を$t$を用いて表せ.
(2)$y$軸と直線$\ell$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とするとき,$\tan 2\theta$を$t$を用いて表せ.
(3)直線$m$の方程式を$t$を用いて表せ.
(4)放物線$C$と直線$m$が接するとき,$t$の値を求めよ.
(5)$(4)$のとき,放物線$C$を直線$\ell$に関して対称移動した曲線を$C_1$,直線$m$に関して対称移動した曲線を$C_2$とする.$C,\ C_1,\ C_2$で囲まれた図形の面積を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。