タグ「分数」の検索結果

385ページ目:全4648問中3841問~3850問を表示)
愛媛大学 国立 愛媛大学 2011年 第2問
単位行列$E$と行列$\displaystyle A=\frac{1}{4} \left( \begin{array}{cc}
1 & -\sqrt{3} \\
-\sqrt{3} & -1
\end{array} \right)$について,次の問いに答えよ.

(1)$A^2=pE+qA$となる実数$p,\ q$の値を求めよ.
(2)自然数$n$に対して,関係式
\[ E+A+A^2+\cdots +A^{2n-1}+A^{2n}=x_nE+y_nA \]
をみたす実数$x_n,\ y_n$を,$n$を用いて表せ.
(3)極限値$\displaystyle \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n$を求めよ.
(4)実数$x,\ y$をそれぞれ$\displaystyle x=\lim_{n \to \infty}x_n,\ y=\lim_{n \to \infty}y_n$で定めるとき
\[ xE+yA=(E-A)^{-1} \]
であることを示せ.
愛媛大学 国立 愛媛大学 2011年 第4問
関数$f(x)=-x \log x-(1-x) \log (1-x) \ (0<x<1)$について次の問いに答えよ.ただし,必要ならば$\displaystyle \lim_{x \to +0}x \log x=0$を使ってよい.

(1)$y=f(x)$の増減,極値,グラフの凹凸,$\displaystyle \lim_{x \to +0}f(x),\ \lim_{x \to 1-0}f(x)$を調べ,そのグラフをかけ.
(2)定積分$\displaystyle S(p)=\int_p^{1-p}f(x) \, dx$を求めよ.ただし,$\displaystyle 0<p<\frac{1}{2}$とする.
(3)極限$\displaystyle \lim_{p \to +0}S(p)$を求めよ.
山梨大学 国立 山梨大学 2011年 第5問
放物線$C:y=x^2$上の点$\mathrm{P}_1$の座標を$(1,\ 1)$とする.定数$k \ (0<k<1)$に対して,$\mathrm{P}_1$と点$(0,\ k)$を通る直線と$C$との交点を$\mathrm{P}_2$とする.ただし,$\mathrm{P}_2$は$\mathrm{P}_1$とは異なる点とする.$\mathrm{P}_2$と点$(0,\ k^2)$を通る直線と$C$との交点を$\mathrm{P}_3$とする.ただし,$\mathrm{P}_3$は$\mathrm{P}_2$とは異なる点とする.以下同様にして,自然数$n$に対し,$\mathrm{P}_n$と点$(0,\ k^n)$を通る直線と$C$との交点を$\mathrm{P}_{n+1}$とする.ただし,$\mathrm{P}_{n+1}$は$\mathrm{P}_n$とは異なる点とする.

(1)$\mathrm{P}_{2n-1}$および$\mathrm{P}_{2n}$の座標を$n$と$k$を用いて表せ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さを$l_n$とする.${l_{2n-1}}^2$および${l_{2n}}^2$を$n$と$k$を用いて表せ.
(3)$\displaystyle k=\frac{1}{2}$のとき,無限級数${l_1}^2+{l_2}^2+\cdots +{l_n}^2+\cdots$の和を求めよ.
山梨大学 国立 山梨大学 2011年 第6問
原点を中心とする楕円$C$が媒介変数$t$を用いて
\[ x=2 \sin \left( t+\frac{\pi}{3} \right),\quad y=2 \sin t \]
と表される.ただし,$t$は$0 \leqq t \leqq 2\pi$とする.

(1)楕円$C$上の点$\mathrm{P}(x,\ y)$と原点の距離を$l$とする.$l^2$を媒介変数$t$を用いて表せ.
(2)楕円$C$の長軸の長さを求めよ.また,長軸と$x$軸のなす角度$\theta$を求めよ.ただし,$\theta$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
(3)楕円$C$の第$1$象限にある部分と$x$軸および$y$軸で囲まれた図形の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第1問
$2$次曲線$C$が媒介変数$\theta$を用いて,
\[ x=3+5 \cos \theta,\quad y=2+3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
と表されている.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を$x,\ y$を用いて表せ.また,$C$を座標平面上に図示せよ.
(2)曲線$C$上の点$\mathrm{P}(3+5 \cos \theta,\ 2+3 \sin \theta)$における$C$の接線$\ell$の方程式は,
\[ \frac{\cos \theta}{5}(x-3)+\frac{\sin \theta}{3}(y-2)=1 \]
となることを示せ.
(3)曲線$C$の焦点を$\mathrm{F}_1$,$\mathrm{F}_2$とする.$i=1,\ 2$に対し,$\mathrm{F}_i$を通り,接線$\ell$に垂直な直線$m_i$の方程式を求めよ.
(4)$i=1,\ 2$に対し,直線$m_i$と$\ell$との交点を$\mathrm{Q}_i$とする.点$\mathrm{O}^\prime(3,\ 2)$とするとき,線分$\mathrm{O}^\prime \mathrm{Q}_i$の長さを求めよ.
(5)$\mathrm{P}$が曲線$C$を一周するとき,線分$\mathrm{Q}_1 \mathrm{Q}_2$の長さの最大値,最小値,およびそのときの点$\mathrm{P}$をそれぞれ求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第3問
実数$k$は$\displaystyle \frac{\pi}{3} \leqq k \leqq \frac{\pi}{2}$の範囲にあるとする.
\[ \begin{array}{ll}
f(x)=\int_{-k}^k \sin (x-t) \cos t \, dt & (-k \leqq x \leqq k) \\
g(x)=\int_{-k}^k |\sin (x-t)|\cos t \, dt & (-k \leqq x \leqq k)
\end{array} \]
と定めるとき,以下の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{6} \right)$と$\displaystyle g \left( -\frac{\pi}{6} \right)$,$2$つの定積分の値をそれぞれ求めよ.
(2)差$f(x)-g(x)$は,区間$-k \leqq x \leqq k$で増加することを示せ.
(3)曲線$y=g(x)$の変曲点は何個あるか,調べよ.
浜松医科大学 国立 浜松医科大学 2011年 第2問
医学部における研究では,いろいろな動物が用いられる.これらの動物を生育して,研究者たちに販売する者の立場から,動物$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を題材にして,以下の問題を考察する.

(1)動物$\mathrm{A}$,$\mathrm{B}$を生育するには,$3$種類の栄養素$p,\ q,\ r$が必要である.生育量(単位$\mathrm{kg}$)と栄養素の量は,ともに実数で示される.
(条件a) $\mathrm{A}$を$x \; \mathrm{kg}$生育するには,$p$が$5x$,$q$が$5x$,$r$が$x$の量,同時に必要である.$\mathrm{A}$の販売価格は$10$万円$/ \mathrm{kg}$である.
(条件b) $\mathrm{B}$を$y \; \mathrm{kg}$生育するには,$p$が$4y$,$q$が$y$,$r$が$2y$の量,同時に必要である.$\mathrm{B}$の販売価格は$5$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$,$r$が$2$の量であると仮定する.このとき,$\mathrm{A}$,$\mathrm{B}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ求めよ.
(2)動物$\mathrm{A}$,$\mathrm{B}$に加えて,動物$\mathrm{C}$も$p,\ q,\ r$の栄養素によって生育できることがわかる.
(条件c) $\mathrm{C}$を$z \; \mathrm{kg}$生育するには,$p$が$2z$,$q$が$3z$,$r$が$z$の量,同時に必要である.$\mathrm{C}$の販売価格は$8$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$の量であるが,(1)の場合と違って$r$はいくらでも手に入るものと仮定する.次の問い$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{C}$の生育量$z \; \mathrm{kg}$は,$\displaystyle z=k \ \left( 0 \leqq k \leqq \frac{11}{10} \right)$として値を固定し,$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ$x \; \mathrm{kg}$,$y \; \mathrm{kg}$として変化させる.このとき,点$(x,\ y)$の動く領域$D(k)$を図示せよ.さらに,$(x,\ y)$がこの領域を動くとき,販売額の最大値を$w(k)$とかく.$w(k)$を$k$の式で表せ.
(ii) $\mathrm{C}$の生育量$z=k$を,$\displaystyle 0 \leqq k \leqq \frac{11}{10}$の範囲から$\displaystyle \frac{11}{10} \leqq k \leqq \frac{4}{3}$の範囲に変更する.このとき,点$(x,\ y)$の動く領域$D(k)$および販売額の最大値$w(k)$はどうなるか,調べよ.
(iii) $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の生育量をそれぞれ求めよ.
山梨大学 国立 山梨大学 2011年 第1問
次の問いに答えよ.

(1)実数$x$に対して$[x]$を$m \leqq x<m+1$を満たす整数$m$とする.このとき
\[ \lim_{n \to \infty} \frac{[10^{2n} \pi]}{10^{2n}} \]
を求めよ.
(2)$\displaystyle y=\log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}$を微分せよ.
(3)$0<x<\pi$において$\sin x+\sin 2x=0$を満たす$x$を求めよ.また,定積分$\displaystyle \int_0^\pi |\sin x+\sin 2x| \, dx$を求めよ.
(4)$A$を$2$次正方行列とする.$A^2-2011A+E=O$ならば$A$は逆行列を持つことを示せ.ただし,$E$は単位行列,$O$は零行列である.
山梨大学 国立 山梨大学 2011年 第2問
実数全体で定義された関数$F(x)$が次の条件$①$と$②$の両方を満たすとき「$F(x)$は性質$(\mathrm{P})$を持つ」ということにする.

$①$ すべての実数$x$について$F(x)>0$である.
$②$ $F(x)$は何度でも微分が可能で$\displaystyle \frac{d^2}{dx^2}\log F(x)=\frac{1}{\{F(x)\}^2}$を満たす.


(1)$y=f(x)$が性質$(\mathrm{P})$を持つとき$y^{\prime\prime}y-(y^\prime)^2=1$,$y^{\prime\prime\prime}y-y^{\prime\prime}y^\prime=0$となること,および$\displaystyle \frac{y^{\prime\prime}}{y}$は正の定数であることを示せ.
(2)$y=f(x)$は性質$(\mathrm{P})$を持つとする.$\displaystyle \frac{y^{\prime\prime}}{y}=k^2$($k$は正の定数)とおくとき,$k^2y^2-(y^\prime)^2=1$であることを示し,さらに$ky-y^\prime>0$および$ky+y^\prime>0$が成り立つことを示せ.
(3)$c$を実数とする.(2)のとき,関数$\displaystyle kf(c)y+\frac{1}{k}f^\prime(c)y^\prime$も性質$(\mathrm{P})$を持つことを証明せよ.ただし$①$を示すために
\[ kf(c)y+\frac{1}{k}f^\prime(c)y^\prime=f(c)(ky \mp y^\prime) \pm \frac{1}{k}y^\prime (kf(c) \pm f^\prime(c)) \quad (\text{複号同順}) \]
を利用してもよい.
山梨大学 国立 山梨大学 2011年 第3問
弧度法で表された$\theta$に対し,$M(\theta)=\left( \begin{array}{cc}
\cos \theta & -\displaystyle\frac{1}{2}\sin \theta \\
2 \sin \theta & \cos \theta
\end{array} \right)$とし,楕円$\displaystyle x^2+\frac{y^2}{4}=1$を$C$とする.

(1)$M(\theta)$で表される$1$次変換により$C$上の点は$C$上の点に移ることを示せ.
(2)弧度法で表された$\alpha,\ \beta$は$\displaystyle 0<\alpha<\frac{\pi}{4}$,$\displaystyle 0<\beta<\frac{\pi}{4}$を満たしているとし,$M(\alpha)$で表される$1$次変換により点$(\cos \beta,\ 2 \sin \beta)$が移される点を$\mathrm{A}$とする.$\mathrm{A}$を通り$y$軸に平行な直線と$C$で囲まれる部分のうち,原点$\mathrm{O}$を含まない方の面積$S$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。