タグ「分数」の検索結果

379ページ目:全4648問中3781問~3790問を表示)
山形大学 国立 山形大学 2011年 第2問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに1回転してできる回転体の体積を求めよ.
山形大学 国立 山形大学 2011年 第3問
座標平面上で原点を中心とする角$\theta \ $(ラジアン)の回転移動を表す行列を$R(\theta)$とする.また,$\displaystyle 0<\theta<\pi \ \left( \theta \neq \frac{\pi}{2} \right)$となる$\theta$に対し,直線$y=(\tan \theta)x$に関する対称移動を表す行列を$A(\theta)$とする.このとき,次の問に答えよ.

(1)行列$X=R(\theta)^{-1}A(\theta)R(\theta)$を求めよ.また,$s$に対して$XR(s)X=R(t)$を満たす$t$を求めよ.ただし,$R(\theta)^{-1}$は$R(\theta)$の逆行列である.
(2)$\displaystyle 0<\alpha<\pi,\ 0<\beta<\pi \ \left( \alpha,\ \beta \neq \frac{\pi}{2} \right)$のとき,$A(\alpha) A(\beta)$を求めよ.
(3)$\displaystyle 0<\beta<\frac{\pi}{2}<\alpha<\pi$のとき,$A(\alpha)A(\beta)=A(\beta)A(\alpha)$となるための必要十分条件を$\alpha,\ \beta$を用いて表せ.
(4)$\displaystyle 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2}$で,点$(\tan \alpha,\ \tan \beta)$が曲線$\displaystyle y=\frac{3x-1}{x+3}$上にあるとき,次の\maru{1},\maru{2}に答えよ.

\mon[\maru{1}] $\tan (\alpha-\beta)$の値を求めよ.
\mon[\maru{2}] $A(\alpha)A(\beta)$を求めよ.
大阪教育大学 国立 大阪教育大学 2011年 第2問
一般項が$\displaystyle a_n=\frac{27}{10}\left( \frac{2}{3} \right)^{n-1}$で与えられる数列$\{a_n\}$の,初項から第$n$項までの和を$b_n$と表すとき,次の問に答えよ.

(1)数列$\{b_n\}$の一般項を求めよ.
(2)楕円$\displaystyle \frac{x^2}{\displaystyle \left( \frac{43}{2}-b_n \right)^2}+\frac{y^2}{\displaystyle \left( \frac{81}{10}+b_n \right)^2}=1$の面積を$S_n$で表すとき.$S_n$が最大になる自然数$n$と,そのときの$S_n$の値を求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第1問
以下の設問に答えよ.

(1)初項$a$,公比$r$の無限等比級数は$|\,r\,|<1$のとき収束し,その和が$\displaystyle \frac{a}{1-r}$となることを示せ.
(2)座標平面上で,動点Pが点$(1,\ 1)$から$x$軸の負の向きに1だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3}$だけ進み,次に$x$軸の負の向きに$\displaystyle \frac{1}{3^2}$だけ進み,次に$y$軸の負の向きに$\displaystyle \frac{1}{3^3}$だけ進む.以下,動点Pがこのような運動を続けるとき,動点Pが限りなく近づく点の座標を求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第2問
自然数$n$に対して$\displaystyle I_n=\int_0^{\frac{\pi}{2}} \cos^n x \, dx$と置く.このとき,以下の設問に答えよ.

(1)$\displaystyle I_n=\int_0^{\frac{\pi}{2}} (\cos^{n-1} x)(\sin x)^\prime \, dx$と書きなおし,部分積分を適用して$I_n$と$I_{n-2}$の関係式を求めよ.但し$n \geqq 3$とする.
(2)$I_5$を求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第3問
次の設問に答えよ.

(1)関数$\displaystyle f(x)=\frac{1}{2}\left( x-\frac{1}{x} \right) \ (x>0)$の逆関数を求めよ.
(2)関数$\displaystyle g(x)=\frac{1}{2}\left( e^x-e^{-x} \right)$の逆関数$h(x)$を求めよ.
(3)上で求めた関数$h(x)$の導関数を求めよ.
宮崎大学 国立 宮崎大学 2011年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(2)$y=e^{\sqrt{x}}$
(3)$\displaystyle y=\frac{\log |\cos x|}{x}$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_0^{\frac{\sqrt{\pi}}{2}} x \tan (x^2) \, dx$
(6)$\displaystyle \int_0^{\frac{1}{3}} xe^{3x} \, dx$
(7)$\displaystyle \int_e^{e^e} \frac{1}{x \log x} \, dx$
(8)$\displaystyle \int_2^3 \frac{x^2+1}{x(x+1)} \, dx$
宮崎大学 国立 宮崎大学 2011年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(2)$y=e^{\sqrt{x}}$
(3)$\displaystyle y=\frac{\log |\cos x|}{x}$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_0^{\frac{\sqrt{\pi}}{2}} x \tan (x^2) \, dx$
(6)$\displaystyle \int_0^{\frac{1}{3}} xe^{3x} \, dx$
(7)$\displaystyle \int_e^{e^e} \frac{1}{x \log x} \, dx$
(8)$\displaystyle \int_2^3 \frac{x^2+1}{x(x+1)} \, dx$
山形大学 国立 山形大学 2011年 第4問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに$1$回転してできる回転体の体積を求めよ.
山形大学 国立 山形大学 2011年 第4問
次の問に答えよ.

(1)自然数$p,\ q$を自然数$m$で割ったときの余りをそれぞれ$r,\ s$とする.このとき,$pq-rs$は$m$の倍数であることを示せ.
(2)$n$が自然数のとき,$3^n$を4で割ったときの余りを求めよ.
(3)$n$を自然数とし,$r$を実数とするとき,二項展開を利用して
\[ \sum_{k=1}^n {}_{2n} \text{C}_{2k-1} \cdot r^{2k-1} \]
を求めよ.
(4)サイコロを$2n$回振り,出た目をすべて掛け合わせた数を$X_n$とする.使用するサイコロの目は1,2,3,4,5,6であり,どの目の出る確率も$\displaystyle \frac{1}{6}$である.このとき,$X_n$を4で割ったときの余りが3である確率$P_n$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。