タグ「分数」の検索結果

377ページ目:全4648問中3761問~3770問を表示)
新潟大学 国立 新潟大学 2011年 第1問
$\triangle$OABにおいて,$\text{OA}=1,\ \text{OB}=\text{AB}=2$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.実数$t$に対して,
\[ \overrightarrow{\mathrm{OP}}=t \left( \overrightarrow{a}+\frac{1}{2}\overrightarrow{b} \right) \]
とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\text{AP}=\text{BP}$を満たすとき,$t$の値を求めよ.さらに線分APの長さを求めよ.
茨城大学 国立 茨城大学 2011年 第1問
$f(x)=e^{-x^2} \ (x \geqq 0)$とする.以下の各問に答えよ.

(1)$x \geqq 0$に対して,不等式$e^x>x$および$\displaystyle e^x>\frac{x^2}{2}$が成り立つことを示せ.
(2)$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$および$\displaystyle \lim_{t \to +0} t \log \frac{1}{t}=0$を示せ.
(3)$f(x)$は減少関数であることを示せ.また,$y = f(x)$の逆関数$x = g(y)$を求めよ.
(4)$a$を$0<a<1$を満たす実数とする.$y$軸,$y= f(x)$のグラフおよび直線$y = a$で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積$V(a)$を求めよ.
(5)(4)で求めた$V(a)$に対し$\displaystyle \lim_{a \to +0}V(a)$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2011年 第4問
数列
{\scriptsize
\[ 1^{0.01},\ 2^{0.02},\ 2^{0.02},\ 3^{0.03},\ 3^{0.03},\ 3^{0.03},\ 4^{0.04},\ 4^{0.04},\ 4^{0.04},\ 4^{0.04},\ 5^{0.05},\ \cdots,\ (n-1)^{\frac{n-1}{100}},\ \underbrace<30,0>{n^{\frac{n}{100}},\ \cdots,\ n^{\frac{n}{100}}}_{n個},\ (n+1)^{\frac{n+1}{100}},\ \cdots \]
}
について,以下の問に答えよ.ただし,$e$は自然対数の底である.

(1)第36項はいくらか.
(2)不定積分$\displaystyle \int x^2 \log_ex \, dx$を求めよ.
(3)第1項から第36項までのすべての項の積を$A$とする.このとき$A$の整数部分の桁数はいくらか.ただし,$2.0<\log_e8<2.1$,$2.1<\log_e9<2.2$,$2.30<\log_e10<2.31$である.
茨城大学 国立 茨城大学 2011年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)次の関数を微分せよ.

\mon[(i)] $y=\sin^3 2x$
\mon[(ii)] $\displaystyle y=\log \frac{e^x}{e^x+1}$

(2)次の不定積分を求めよ.

(3)$\displaystyle \int \frac{1}{x^2} \left( 1+\frac{2}{x} \right)^2 \, dx$
\mon[(ii)] $\displaystyle \int \frac{x^2}{x^2-1} \, dx$

(4)定積分$\displaystyle \int_{-1}^{\log 2} e^{|x|}e^{x} \, dx$を求めよ.
茨城大学 国立 茨城大学 2011年 第2問
$a,\ b,\ c$は実数の定数で,$a>0, b \geqq 0$とする.実数$x,\ y$に関する条件$p,\ q,\ r$を次のように定める.
\begin{align}
& p:x^2+y^2 \leqq 1 \nonumber \\
& q:\left( x-\frac{1}{2} \right)^2+\left( y-\frac{1}{2} \right)^2 \leqq a^2 \nonumber \\
& r:y \leqq \sqrt{b}x+c \nonumber
\end{align}
以下の各問に答えよ.

(1)条件$q$が条件$p$であるための十分条件となるとき,$a$の値の範囲を求めよ.
(2)条件$r$が条件$p$であるための必要条件となるとき,$b,\ c$が満たす条件を求め,それを$bc$平面に図示せよ.
山形大学 国立 山形大学 2011年 第1問
関数$f(x)=x+\cos (2x)$がある.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$を求めよ.
(3)曲線$\displaystyle y=f(x) \ \left( \text{ただし,} \ 0 \leqq x \leqq \frac{\pi}{2} \right)$の増減表を書け.増減表には,増減のほか,凹凸についても明示すること.
(4)曲線$\displaystyle y=f(x) \ \left( \text{ただし,} \ 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを描け.
山形大学 国立 山形大学 2011年 第2問
平面上の曲線$C$は媒介変数$t$を用いて,
\[ x=\cos t,\quad y=a \sin t+ b \cos t \quad (0 \leqq t \leqq 2\pi) \]
と表される.$a,\ b$は定数であり,$a>0$を満たす.以下の問に答えよ.

(1)曲線$C$の方程式を$x,\ y,\ a,\ b$を用いて表し,$y$について解け.
(2)曲線$C$が$x$軸,$y$軸と交わる点の座標を求めよ.

定数$a,\ b$がそれぞれ$\displaystyle a=\frac{1}{\sqrt{2}},\ b=\frac{1}{\sqrt{2}}$のとき,以下の問に答えよ.

(3)$x,\ y$のそれぞれの最大値,最小値を求めよ.
(4)曲線$C$によって囲まれた部分の面積を求めよ.
山形大学 国立 山形大学 2011年 第3問
$xy$平面上に直線$\ell:y=(1-\sqrt{3})x+1+\sqrt{3}$と曲線$C:y=-x^2+3x$がある.次の問いに答えよ.

(1)直線$\ell$と曲線$C$の交点の座標を求めよ.
(2)連立不等式
\[ \left\{
\begin{array}{l}
y \geqq (1-\sqrt{3})x+1+\sqrt{3} \\
y \leqq -x^2+3x
\end{array}
\right. \]
の表す領域を$D$とする.

\mon[(i)] 領域$D$を$xy$平面上に図示し,$D$の面積を求めよ.
\mon[(ii)] 点$(x,\ y)$が領域$D$を動くとき,$\displaystyle \frac{y}{x}$の最大値と最小値を求めよ.
山形大学 国立 山形大学 2011年 第3問
正の定数$k$に対し,曲線$y=kx^2$を$C$とする.この曲線$C$を用いて,数列$\{a_n\}$を次のように定める.

\mon[(1)] $a_1>0$
\mon[(ii)] $n=1,\ 2,\ 3,\ \cdots$に対し,点P$_n (a_n,\ k(a_n)^2)$における曲線$C$の接線と$x$軸との交点の$x$座標を$a_{n+1}$とする.

このとき,次の問に答えよ.

(1)曲線$C$上の点P$_1$における接線の方程式を求めよ.
(2)$a_2$を$a_1$で表せ.
(3)$a_n$を$a_1$で表せ.
(4)曲線$C$,$x$軸,直線$x=a_n$,$x=a_{n+1}$で囲まれた図形の面積を$S_n$とする.$S_n$を$a_1$で表せ.
(5)$T_n=S_1+S_3+\cdots +S_{2n-1}$とする.$T_{n}$を$a_1$で表せ.
(6)$U_n=S_2+S_4+\cdots +S_{2n}$とする.$\displaystyle \frac{U_n}{T_n}$を求めよ.
福井大学 国立 福井大学 2011年 第1問
1から6の目の出る確率がそれぞれ下の表のようになっているさいころがあるとする.このさいころの出る目の期待値が$\displaystyle \frac{15}{4}$であるとき,以下の問いに答えよ.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
さいころの目 & \hspace{-3.5mm} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline
確率 & \hspace{-3.5mm} & $x$ & $y$ & $x$ & $x$ & $x$ & $y$ \\ \hline
\end{tabular}


(1)$x,\ y$の値を求めよ.
(2)このさいころを5回投げるとき,3回以上6の目が出る確率を求めよ.
(3)このさいころを2回投げるとき,出る目の最小値の期待値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。