タグ「分数」の検索結果

365ページ目:全4648問中3641問~3650問を表示)
金沢大学 国立 金沢大学 2011年 第1問
座標平面上に点$\mathrm{A}(2 \cos \theta,\ 2 \sin \theta)$,$\displaystyle \mathrm{B} \left( \frac{4}{3},\ 0 \right)$,$\mathrm{C}(\cos \theta,\ -\sin \theta)$がある.ただし,$0 < \theta < \pi$とする.次の問いに答えよ.

(1)直線$\mathrm{AC}$と$x$軸の交点を$\mathrm{P}$とする.$\mathrm{P}$の座標を$\theta$で表せ.
(2)$\triangle \mathrm{ABC}$の面積$S(\theta)$を求めよ.
(3)面積$S(\theta)$の最大値とそのときの$\theta$の値を求めよ.
静岡大学 国立 静岡大学 2011年 第3問
座標平面上に点P$(0,\ 0)$,M$(\sqrt{3},\ 1)$をとる.点Mを中心とし,$x$軸に接するように円を描き,接点をAとおく.Pより円にもう1本の接線を引き接点をBとする.円に2線分PAとPBをつけ加えた図形を$x$軸に接したまますべることなく$x$軸の正の方向にころがし,線分PBが$x$軸に重なるまで移動させる.次の問いに答えよ.

(1)移動中の円の中心の座標を$(\sqrt{3}+t,\ 1)$とする.$t$の取りうる値の範囲を求めよ.
(2)点Pの軌跡を$C$とする.曲線$C$の接線$\ell$の傾きが$\displaystyle \frac{\sqrt{3}}{2}$のとき,直線$\ell$の方程式を求めよ.
(3)曲線$C$と(2)で求めた接線$\ell$および$y$軸で囲まれた部分の面積を求めよ.
広島大学 国立 広島大学 2011年 第2問
次の問いに答えよ.

(1)$\displaystyle \log_2 3 = \frac{m}{n}$を満たす自然数$m,\ n$は存在しないことを証明せよ.
(2)$p,\ q$を異なる自然数とするとき,$p \log_2 3$と$q \log_2 3$の小数部分は等しくないことを証明せよ.
(3)$\log_2 3$の値の小数第1位を求めよ.
広島大学 国立 広島大学 2011年 第3問
次の問いに答えよ.

(1)$a,\ b,\ c$を定数とする.関数$f(x) = a \cos^2 x+2b \cos x \; \sin x+c \sin^2 x$が定数となるための$a,\ b,\ c$の条件を求めよ.
(2)関数
\[ g(x) = 4 \cos^2 x+2 \cos x \; \sin x+ \sin^2 x -\frac{5}{2} \quad (-\frac{\pi}{4} \leqq x \leqq \frac{\pi}{4}) \]
が最大値をとる$x$の値を$\theta$とする.$\cos 2\theta,\ \sin 2\theta$の値を求めよ.
(3)(2)の関数$g(x)$と$\theta$に対して,定積分$\displaystyle \int_0^\theta g(x) \, dx$を求めよ.
広島大学 国立 広島大学 2011年 第4問
平面上で,線分ABを$1:2$に内分する点をOとし,Oを中心とする半径OBの円を$S$,円$S$と直線ABとの交点のうち点Bと異なる方をCとする.点Pは円$S$の内部にあり,線分BC上にないものとする.円$S$と直線PBとの交点のうち点Bと異なる方をQとする.$\overrightarrow{\mathrm{PA}} =\overrightarrow{a},\ \overrightarrow{\mathrm{PB}} =\overrightarrow{b},\ \angle \text{APB} = \theta$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PO}},\ \overrightarrow{\mathrm{PC}},\ \overrightarrow{\mathrm{OB}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)点Pが円$S$の内部にあることを用いて,$\displaystyle \cos \theta < \frac{|\overrightarrow{b}|}{4|\overrightarrow{a}|}$を証明せよ.
(3)PQの長さを$|\overrightarrow{a}|,\ |\overrightarrow{b}|,\ \theta$で表せ.
(4)$\text{PA}=3,\ \text{PB}=2$とする.$\triangle \text{QAB} = 3 \triangle \text{POB}$を満たすとき,$\triangle$PABの面積を求めよ.
埼玉大学 国立 埼玉大学 2011年 第4問
2次関数$\displaystyle f(x) = \frac{12}{5}x^2-\frac{32}{5}x + 4$と,1次関数$g(x) = 2x- 2$が与えられている.この2つの関数$f(x)$と$g(x)$を用いて,$a \geqq 1$の範囲で$S(a)$を,以下のように定める.
\[ S(a) = \int_a^{a+1} | f(x)-g(x) | \, dx \]
このとき$S(a)$を求めなさい.
広島大学 国立 広島大学 2011年 第5問
$\triangle$ABCの頂点は反時計回りにA,B,Cの順に並んでいるとする.点Aを出発した石が,次の規則で動くとする.\\
\quad コインを投げて表が出たとき反時計回りに隣の頂点に移り,裏が出たときは動かない.コインを投げて表と裏の出る確率はそれぞれ$\displaystyle \frac{1}{2}$とする. \\
コインを$n$回投げたとき,石が点A,B,Cにある確率をそれぞれ$a_n,\ b_n,\ c_n$とする.次の問いに答えよ.

(1)$a_1,\ b_1,\ c_1$の値を求めよ.
(2)$a_{n+1},\ b_{n+1},\ c_{n+1}$を$a_n,\ b_n,\ c_n$で表せ.また,$a_2,\ b_2,\ c_2$および$a_3,\ b_3,\ c_3$の値を求めよ.
(3)$a_n,\ b_n,\ c_n$のうち2つの値が一致することを証明せよ.
(4)(3)において一致する値を$p_n$とする.$p_n$を$n$で表せ.
広島大学 国立 広島大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{2-\sqrt{3}}$の整数部分を$a$,小数部分を$b$とする.不等式
\[ \frac{1}{2-\sqrt{3}} < \frac{6}{a}+\frac{k}{b} \]
を満たす$k$の値の範囲を求めよ.
(2)$a,\ b$は定数で,$a>0$とする.2次関数$f(x)=ax^2-2x+b$の定義域を$-1 \leqq x \leqq 2$とし,$f(-1)<f(2)$を満たすとする.関数$y=f(x)$の値域が$-1 \leqq y \leqq 7$であるとき,定数$a,\ b$の値を求めよ.
広島大学 国立 広島大学 2011年 第2問
次の問いに答えよ.

(1)$\displaystyle \log_2 3 = \frac{m}{n}$を満たす自然数$m,\ n$は存在しないことを証明せよ.
(2)$p,\ q$を異なる自然数とするとき,$p \log_2 3$と$q \log_2 3$の小数部分は等しくないことを証明せよ.
(3)$\log_2 3$の値の小数第1位を求めよ.
広島大学 国立 広島大学 2011年 第3問
放物線$\displaystyle F:y=\frac{1}{2}(x+1)^2$上の点A$\displaystyle \left( 0,\ \frac{1}{2} \right)$を通り,Aにおける$F$の接線に垂直な直線を$\ell$とし,$\ell$と放物線$F$との交点のうち点Aと異なる方をB$\displaystyle \left( b,\ \frac{1}{2}(b+1)^2 \right)$とする.次の問いに答えよ.

(1)直線$\ell$の方程式と$b$の値を求めよ.
(2)放物線$F$と直線$\ell$で囲まれた部分の面積$T_1$を求めよ.
(3)線分ABを直径とする円を$C$とする.このとき,不等式$\displaystyle y \leqq \frac{1}{2}(x+1)^2$の表す領域で円$C$の内部にある部分の面積$T_2$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。