タグ「分数」の検索結果

360ページ目:全4648問中3591問~3600問を表示)
釧路公立大学 公立 釧路公立大学 2012年 第3問
以下の各問に答えよ.

(1)次の不等式を解け.$2 \log_{\frac{1}{4}} (4x+1) \geqq 1+\log_{\frac{1}{2}} (11-x)$
(2)以下の問に答えよ.

(i) 次の等式を満たす関数$f(x)$を求めよ.$\displaystyle f(x)=x^2-2x+3 \int_0^1 f(t) \, dt$
(ii) $(ⅰ)$で求めた$f(x)$に点$\displaystyle \left( \frac{3}{2},\ -2 \right)$から引いた接線の方程式と,接点の座標を求めよ.
(iii) $(ⅰ)$,$(ⅱ)$で求めた関数$f(x)$と$2$つの接線で囲まれた図形の面積を求めよ.
北九州市立大学 公立 北九州市立大学 2012年 第3問
関数$\displaystyle y=f(x)=e^{-\frac{x^2}{2}}$について,以下の問いに答えよ.

(1)第$1$次導関数$y^\prime$を求めよ.
(2)第$2$次導関数$y^{\prime\prime}$を求めよ.
(3)関数$y=f(x)$の増減,極値,グラフの凹凸および変曲点を調べて,そのグラフをかけ.
京都府立大学 公立 京都府立大学 2012年 第1問
$a,\ b$を実数とする.関数$\displaystyle f(x)=\frac{a^x-b^x}{\sqrt{5}}$は$f(1)=1$,$f(2)=1$を満たすとする.以下の問いに答えよ.

(1)$a,\ b$の値を求めよ.
(2)$f(2)+f(3)=f(4)$が成り立つことを示せ.
(3)$x$が自然数のとき,$f(x)$も自然数となることを示せ.
京都府立大学 公立 京都府立大学 2012年 第3問
$a$を実数とする.$xy$平面上に,曲線$\displaystyle C_1:\frac{x^2}{4}+y^2=1$,曲線$\displaystyle C_2:y=\frac{x^2}{2}+a$,次の連立不等式の表す領域$D$がある.
\[ \left\{ \begin{array}{l}
\displaystyle\frac{x^2}{4}+y^2 \leqq 1 \\
y \geqq \displaystyle\frac{x^2}{2}-1
\end{array} \right. \]
以下の問いに答えよ.

(1)$C_1$と$C_2$が共有点をもつとき,$a$の値の範囲を求めよ.
(2)$C_1$と$C_2$の共有点の個数を,$a$の値によって分類せよ.
(3)$D$の面積を求めよ.
福島県立医科大学 公立 福島県立医科大学 2012年 第1問
以下の各問いに答えよ.

(1)行列$A=\left( \begin{array}{cc}
-1 & 2 \\
-6 & 6
\end{array} \right)$,$B=\left( \begin{array}{cc}
2 & 0 \\
0 & 3
\end{array} \right)$について,$AX=XB$,$X^{-1}=X$を満たす行列$X$をすべて求めよ.
(2)$\mathrm{OC}$と$\mathrm{AB}$が平行である台形$\mathrm{OABC}$があって,$\mathrm{OA}=\mathrm{OC}=\mathrm{BC}=1$,$\mathrm{AB}=\mathrm{AC}$,$\displaystyle \angle \mathrm{AOC}>\frac{\pi}{2}$を満たしているものとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{AOC}=\theta$として,以下の問いに答えよ.

(i) $\cos \theta$の値を求めよ.また,$\overrightarrow{\mathrm{BC}}$を$\overrightarrow{a}$と$\overrightarrow{c}$を用いて表せ.
(ii) 点$\mathrm{B}$から対角線$\mathrm{AC}$に垂線を下ろし,垂線と$\mathrm{AC}$との交点を$\mathrm{H}$とする.$\displaystyle \frac{\mathrm{CH}}{\mathrm{AH}}$を求めよ.
福島県立医科大学 公立 福島県立医科大学 2012年 第2問
以下の各問いに答えよ.

(1)$e$は自然対数の底とし,$a$は正の実数とする.以下の問いに答えよ.

(i) $x>0$で定義された関数$f(x)=a \log x-x$の増減を調べ,極値を求めよ.
(ii) $\displaystyle \lim_{x \to \infty} x^a e^{-2x}=0$を示せ.
(iii) 極限値$\displaystyle \lim_{x \to \infty} \int_0^x t^2e^{-2t} \, dt$を求めよ.

(2)$0<t<\pi$とする.曲線$\displaystyle C:y=\sin \frac{x}{2} (0 \leqq x \leqq \pi)$上の点$\displaystyle \mathrm{P} \left( t,\ \sin \frac{t}{2} \right)$における$C$の接線を$\ell_1$,点$\mathrm{P}$と原点を通る直線を$\ell_2$とする.以下の問いに答えよ.

(i) 接線$\ell_1$と$x$軸との交点の$x$座標を$t$を用いて表せ.
(ii) $j=1,\ 2$について,直線$\ell_j$,$x$軸および直線$x=t$で囲まれた三角形を$x$軸のまわりに回転させてできた円錐の体積を$V_j$とする.また,曲線$C$,$x$軸および直線$x=t$で囲まれた図形を$x$軸のまわりに回転させてできた回転体の体積を$V$とする.$V_1$,$V_2$および$V$を$t$を用いて表せ.
(iii) 極限値$\displaystyle \lim_{\theta \to 0} \frac{\theta-\sin \theta}{\theta^3}$を求めよ.ただし,$\displaystyle \lim_{\theta \to 0} \frac{\sin \theta}{\theta}=1$は利用してよい.
福島県立医科大学 公立 福島県立医科大学 2012年 第4問
自然数を自然数に移す関数$f(n)=\left\{ \begin{array}{cl}
\displaystyle\frac{n}{2} & (n \text{が偶数のとき}) \\
n+1 & (n \text{が奇数のとき})
\end{array} \right.$について,$f$が$m$を$n$に移すことを,$m \longmapsto \hspace{-9mm} {\phantom{\frac{1}{2}}}^f \hspace{3mm} n$と表す.例えば,
\[ 2 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{2.5mm} 1,\qquad 3 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{3mm} 4 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{3mm} 2 \longmapsto \hspace{-10mm} {\phantom{{2^2}^2}}^f \hspace{3mm} 1 \]
である.$2$以上の自然数$n$を$f$で繰り返し移すとき,$1$に移るまでに必要な最小の移動回数を$a_n$とする.したがって,$a_2=1$,$a_3=3$である.$n$を自然数として,以下の問いに答えよ.

(1)$a_{2n+1}$と$a_{2n+2}$をそれぞれ$a_{n+1}$を用いて表せ.
(2)数列$\{a_2,\ a_3,\ a_4,\ \cdots \}$を次のように,第$n$群の項数が$2^{n-1}$になるように分ける.
\[ a_2 \;|\; a_3,\ a_4 \;|\; a_5,\ a_6,\ a_7,\ a_8 \;|\; a_9,\ a_{10},\ a_{11},\ a_{12},\ a_{13},\ a_{14},\ a_{15},\ a_{16} \;|\; \cdots \]

(i) 第$n$群の初項を$n$を用いて表せ.
(ii) 第$n$群の総和を$S_n$とする.$S_{n+1}$を$n$と$S_n$を用いて表せ.また,$S_n$を$n$を用いて表せ.
(iii) $\displaystyle \sum_{k=2}^{2^n} a_k$を$n$を用いて表せ.
北九州市立大学 公立 北九州市立大学 2012年 第2問
以下の問いの空欄$[サ]$~$[ナ]$に適する数値,式を記せ.

(1)$2$次方程式$2x^2-5x+4=0$の$2$つの解を$\alpha,\ \beta$とするとき,
\[ \alpha^2+\beta^2=[サ],\quad \frac{1}{\alpha}+\frac{1}{\beta}=[シ],\quad \alpha^3+\beta^3=[ス] \]
である.
(2)点$\mathrm{P}$が円$x^2+y^2=4$の周上を動くとき,点$\mathrm{A}(8,\ 0)$と点$\mathrm{P}$を結ぶ線分$\mathrm{AP}$を$\mathrm{AQ}:\mathrm{QP}=2:3$に内分する点$\mathrm{Q}$の軌跡は中心$[セ]$,半径$[ソ]$の円である.
(3)$0 \leqq \theta<2\pi$とする.方程式$\sqrt{3} \sin \theta+\cos \theta+1=0$を解くと$\theta=[タ],\ [チ]$である.
(4)$4^{45}$は$[ツ]$桁の数である.また,$\displaystyle \left( \frac{1}{8} \right)^{17}$は,小数第$[テ]$位にはじめて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$とする.
(5)$a_1=1$,$a_{n+1}=a_n+n (n=1,\ 2,\ 3,\ \cdots)$で定義される数列$\{a_n\}$の一般項は,$a_n=[ト]$である.また,数列$\{a_n\}$の初項から第$n$項までの和は,$S_n=[ナ]$である.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第2問
空間に$2$点$\displaystyle \mathrm{A} \left( 0,\ 0,\ \frac{3}{2} \right)$,$\mathrm{B}(0,\ 0,\ 2)$と,$xy$平面上を動く点$\mathrm{P}(s,\ t,\ 0)$がある.また,線分$\mathrm{BP}$を$u:(1-u)$に内分する点を$\mathrm{Q}$とする.ただし,$s$と$t$は実数であり,$0<u<1$である.

(1)点$\mathrm{Q}$の座標を$u,\ s,\ t$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AQ}}|=|\overrightarrow{\mathrm{AB}}|$を満たす$u$を$s$と$t$を用いて表せ.
(3)点$\mathrm{Q}$が$yz$平面に平行な平面$\displaystyle x=\frac{\sqrt{3}}{4}$上にあり,かつ$|\overrightarrow{\mathrm{AQ}}|=|\overrightarrow{\mathrm{AB}}|$が成り立つとき,点$\mathrm{P}$は必ずある円$C$の上にある.円$C$の中心の座標と半径を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第3問
関数$f(x)=mx \cos (mx)-\sin (mx)$について,以下の問いに答えよ.ただし,$m$は正の整数とする.

(1)$f(x)$が極値をとる最も小さい正の実数$x$を,$m$を用いて表せ.
(2)$m=2$のとき,区間$0 \leqq x \leqq 2\pi$における$f(x)$の最大値を求めよ.
(3)$m=3$のとき,曲線$y=f(x)$上の点$\displaystyle \left( \frac{\pi}{2},\ f \left( \frac{\pi}{2} \right) \right)$における曲線の接線が$y$軸と交わる点の座標$(x_0,\ y_0)$を求めよ.
(4)$\displaystyle \int_0^\pi f(x) \, dx=0$が成り立つために$m$が満たすべき条件を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。