タグ「分数」の検索結果

357ページ目:全4648問中3561問~3570問を表示)
愛知県立大学 公立 愛知県立大学 2012年 第3問
$a$を,$a>0$かつ$a \neq 1$を満たす実数とし,
\[ F_a(x) = \int_0^x a^t \sin 2\pi t \, dt \quad (0 \leqq x \leqq 1) \]
とする.このとき,以下の問いに答えよ.

(1)次式が成り立つことを示せ.
\[ F_a(x)=\frac{2\pi+a^x \{ (\log a) \sin 2\pi x - 2\pi \cos 2\pi x \}}{4\pi^2+(\log a)^2} \]
(2)$F_a(x)$の最大値を,$a$を用いて表せ.
大阪府立大学 公立 大阪府立大学 2012年 第2問
関数$\displaystyle f(x)=\frac{2^x-1}{2^x+1}$について,以下の問いに答えよ.

(1)$\displaystyle f \biggl( \frac{1}{2} \biggr)$を求めよ.
(2)$\displaystyle f(2x)=\frac{2f(x)}{1+f(x)^2}$を示せ.
(3)すべての自然数$n$に対して$\displaystyle b_n=f \biggl( \frac{1}{2^n} \biggr)$は無理数であることを,数学的帰納法を用いて示せ.ただし,有理数$r,\ s$を用いて表される実数$r+s\sqrt{2}$は$s \neq 0$ならば無理数であることを,証明なく用いてもよい.
大阪府立大学 公立 大阪府立大学 2012年 第4問
実数$\displaystyle t \left( 0 \leqq t \leqq \frac{5}{2} \right)$に対し,座標平面上の点P$(2t-5,\ 0)$とQ$(t,\ t^2)$を考える.

(1)放物線$y=x^2$の$0 \leqq x \leqq t$の部分と線分OPおよび線分PQで囲まれた部分の面積を求めよ.ただし,Oは原点を表す.
(2)$t$が$\displaystyle 0 \leqq t \leqq \frac{5}{2}$の範囲を動くとき,(1)で求めた面積の最大値を求めよ.
大阪府立大学 公立 大阪府立大学 2012年 第2問
$k$と$a$を正の定数とする.曲線$\displaystyle C:y=\frac{x}{x+k} \ (x \geqq 0)$と直線$x=a$および$x$軸で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を$V_1$とする.また,曲線$C$と直線$\displaystyle y=\frac{a}{a+k}$および$y$軸で囲まれた図形を$y$軸のまわりに1回転してできる回転体の体積を$V_2$とする.このとき,比$\displaystyle \frac{V_2}{V_1}$を求めよ.
大阪府立大学 公立 大阪府立大学 2012年 第2問
座標平面上に3点O$(0,\ 0)$,A$(r,\ 0)$,B$(0,\ 1)$がある.Oを中心として,Aを反時計回りに$\theta$回転した点をA$^\prime$とし,線分ABと線分OA$^\prime$の交点をPとする.ただし,$r$は$r>1$を満たす定数とし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$を満たす変数とする.$\theta$が不等式$\displaystyle \frac{1}{2}r \cos \theta \leqq \sin \theta \leqq 2r \cos \theta$を満たしながら変化するとき,$|\overrightarrow{\mathrm{OP}}|$の最小値$M$と,そのときのPの座標$(k,\ l)$を求めよ.
広島市立大学 公立 広島市立大学 2012年 第1問
次の問いに答えよ.

(1)次の不定積分を求めよ.\\
$\displaystyle (\text{i}) \int \frac{\log x}{\sqrt[3]{x}} \, dx \qquad (\text{ii}) \int \sin^9 x \cos x \, dx \qquad (\text{iii}) \int \sin^9 x \cos^3 x \, dx$
(2)次の極限値を求めよ.$\displaystyle \lim_{x \to 0} \frac{1-\cos x}{x^2}$
(3)$\displaystyle \lim_{x \to \infty} \frac{\sin x}{x}=0$を示せ.
大阪府立大学 公立 大阪府立大学 2012年 第3問
表が出る確率が$p$,裏がでる確率が$1-p$である1個のコインがある.ただし,$p$は$0<p<1$である定数とする.このコインをくりかえし投げる試行を考える.$n$を2以上の自然数とし,$Q_n$を$n$回目に初めて2回続けて表が出る確率とする.以下の問いに答えよ.

(1)$Q_2,\ Q_3,\ Q_4$を$p$を用いて表せ.
(2)1回目に表が出た場合と裏が出た場合に分けることによって,$Q_{n+2}$を$Q_n,\ Q_{n+1}$および$p$を用いて表せ.
(3)$\displaystyle p=\frac{3}{7}$のとき,一般項$Q_n$を$n$を用いて表せ.
広島市立大学 公立 広島市立大学 2012年 第3問
空間内に4点O,A,B,Cがあり,次の条件を満たすものとする.
\[ \text{OA}=1,\ \text{OB}=1,\ \text{OC}=2,\ \angle \text{AOB}=\frac{\pi}{2},\ \angle \text{BOC}=\frac{\pi}{3},\ \angle \text{COA}=\frac{\pi}{4} \]
また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,Pは平面OAB上の点で$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$と表されているとする.点Pが$|\overrightarrow{\mathrm{OP}}|=1$を満たして動くとき,以下の問いに答えよ.

(1)点Cから平面OABに下ろした垂線と平面OABの交点をQとする.したがって,$\text{CQ} \perp \text{OA},\ \text{CQ} \perp \text{OB}$である.$\overrightarrow{\mathrm{OQ}}=u \overrightarrow{a}+v \overrightarrow{b}$と表したとき,$u,\ v$を求めよ.
(2)$(ⅰ)$ \ 内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$の最大値と最小値を求めよ.また,最大値をとるときの$x,\ y$の値,最小値をとるときの$x,\ y$の値をそれぞれ求めよ.\\
$(ⅱ)$ \ $\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OC}}$のなす角$\theta$がとりうる値の範囲を求めよ.ただし,$0 \leqq \theta \leqq \pi$とする.
(3)内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OC}}$が最大値,最小値をとるときの点PをそれぞれP$_1$,P$_2$とおく.点P$_1$,P$_2$はいずれも直線OQ上にあることを示せ.ただし,Qは(1)で定めた点とする.
広島市立大学 公立 広島市立大学 2012年 第4問
関数$\displaystyle f(x)=\frac{x}{x^2+2}$について,以下の問いに答えよ.

(1)関数$f(x)$の増減,極値,および$y=f(x)$のグラフの凹凸,変曲点を調べよ.さらに,このグラフの概形を描け.
(2)$\displaystyle F(x)=\int_x^{x+1}f(t) \, dt$とおく.$F(x)$の最大値とそのときの$x$の値を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第2問
以下の問いに答えよ.

(1)$|x+y+1| \leqq 3$で定まる座標平面の領域を$D$とする.$D$を図示せよ.
(2)方程式$\displaystyle y= \left( -1+\frac{1}{a} \right)x$で与えられる直線$\ell$と,(1)で定めた領域$D$の共通部分として与えられる線分を考える.この線分の長さの最小値を求めよ.また,線分の長さが最小となるときの直線$\ell$は,どのような方程式で与えられるか.ただし,$a$は$0$でない定数とする.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。