タグ「分数」の検索結果

348ページ目:全4648問中3471問~3480問を表示)
千葉工業大学 私立 千葉工業大学 2012年 第3問
次の各問に答えよ.

(1)$\displaystyle t=x-\frac{4}{x}$とおくと$\displaystyle t^2=x^2+\frac{[アイ]}{x^2}-[ウ]$である.$4$次方程式
\[ x^4-2x^3-16x^2+8x+16=0 \cdots\cdots (*) \]
の両辺に$\displaystyle \frac{1}{x^2}$をかけた方程式は,$\displaystyle t=x-\frac{4}{x}$を用いて,$t^2-[エ]t-[オ]=0$と表される.$4$次方程式$(*)$の解は$x=[カ] \pm [キ] \sqrt{[ク]}$,$[ケコ] \pm \sqrt{[サ]}$である.
(2)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$から異なる$3$個を並べて$3$桁の整数をつくる.このような整数は全部で$[シス]$個あり,このうち,偶数は$[セソ]$個,$9$の倍数は$[タ]$個ある.また,偶数でもなく$9$の倍数でもないものは$[チツ]$個ある.
千葉工業大学 私立 千葉工業大学 2012年 第4問
三角形$\mathrm{ABC}$は$\mathrm{AB}=2$,$\mathrm{AC}=7$であり,辺$\mathrm{BC}$を$2:3$に内分する点を$\mathrm{M}$とすると$\angle \mathrm{BAM}={60}^\circ$である.$\mathrm{AM}=x$とするとき,次の問いに答えよ.

(1)三角形$\mathrm{ABM}$の面積を$x$を用いて表すと$\displaystyle \frac{\sqrt{[ア]}}{[イ]}x$である.また,$\mathrm{BM}:\mathrm{MC}=2:3$より,三角形$\mathrm{AMC}$の面積は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オ]}x$である.
(2)$\displaystyle \sin \angle \mathrm{MAC}=\frac{[カ] \sqrt{[キ]}}{[クケ]}$であり,$\angle \mathrm{MAC}<{120}^\circ$であることから,$\cos \angle \mathrm{MAC}=\displaystyle\frac{[コサ]}{[シス]}$である.
(3)$\displaystyle \sin \angle \mathrm{BAC}=\frac{[セ] \sqrt{[ソ]}}{[タ]}$である.
(4)三角形$\mathrm{ABC}$の面積は$[チ] \sqrt{[ツ]}$であり,$\displaystyle x=\frac{[テト]}{[ナ]}$である.
京都女子大学 私立 京都女子大学 2012年 第1問
次の各問に答えよ.

(1)$A=2x^2-xy-3y^2+3x+8y-5$を因数分解せよ.また,$\displaystyle x=\frac{\sqrt{7}-2}{2},\ y=\frac{1}{\sqrt{7}-2}$のとき,$A$の値を求めよ.
(2)方程式$\displaystyle |-\abs{x|+4}=\frac{1}{2}x+1$の解を求めよ.
(3)$2$次関数$f(x)=ax^2+2ax+a+b$($a,\ b$は定数)が区間$-2 \leqq x \leqq 2$において最大値$4$,最小値$1$をとるように$a,\ b$の値を定めよ.
大阪産業大学 私立 大阪産業大学 2012年 第2問
直線$\ell:y=-3x+k$が,点$\mathrm{P}(1,\ 6)$および点$\mathrm{Q}$の$2$点で円$O:x^2+{(y-4)}^2=5$と交わり,点$\mathrm{Q}$で曲線$\displaystyle C:y=\frac{a}{x}+b$と接している.ここで$k,\ a,\ b$は定数とする.以下の各問いに答えよ.

(1)$k$の値を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)$a$と$b$の値を求めよ.
(4)直線$\ell$と曲線$C$,および直線$x=1$で囲まれた部分の面積$S$を求めよ.
大阪工業大学 私立 大阪工業大学 2012年 第1問
次の空所を埋めよ.

(1)$\log_{10}a=\log_{100}a^r$,$\log_{10}3+2 \log_{100}4-\log_{10}6=\log_{100}M$と表すとき,$r=[ア]$であり,$M=[イ]$である.
(2)$a$を正の実数とするとき,$x=i(a+i)^3$が実数となる$a$の値は$[ウ]$であり,このとき$x$の値は$[エ]$である.ただし,$i^2=-1$とする.
(3)初項から第$3$項までの和が$21$,初項から第$6$項までの和が$189$である等比数列の初項は$[オ]$であり,公比は$[カ]$である.
(4)点$\mathrm{A}(-1,\ 0)$を通る直線$\ell$が,中心$(1,\ 0)$,半径$1$の円と$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,$\mathrm{AP} \cdot \mathrm{AQ}=[キ]$である.さらに,$\mathrm{PQ}=1$のとき,直線$\ell$と$x$軸のなす角を$\theta$とすると,$\cos \theta=[ク]$である.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
大阪学院大学 私立 大阪学院大学 2012年 第1問
$\displaystyle x=\frac{4}{\sqrt{5}-\sqrt{3}},\ y=\frac{4}{\sqrt{5}+\sqrt{3}}$のとき,次の式の値を求めなさい.

(1)$x^2+y^2$
(2)$x^2-y^2$
(3)$x^4-x^4y^2+x^2y^4-y^4$
大阪工業大学 私立 大阪工業大学 2012年 第3問
次の問いに答えよ.

(1)関数$f(t)=2t^3-3t^2+1 (0 \leqq t \leqq 1)$の最小値を求めよ.
(2)$(1)$を利用して,$\displaystyle 0<x<\frac{\pi}{2}$のとき,$2 \cos^3 x-3 \cos^2 x+1>0$となることを示せ.
(3)関数$g(x)=\tan x+2 \sin x-3x$を微分せよ.
(4)$\displaystyle 0<x<\frac{\pi}{2}$のとき,$\tan x+2 \sin x>3x$となることを示せ.
近畿大学 私立 近畿大学 2012年 第2問
$f(x)=x^2-4x+7$とし,放物線$y=f(x)$上の$2$点$\mathrm{A}(t,\ f(t))$,$\mathrm{B}(t+a,\ f(t+a)) (a>0)$における$y=f(x)$の接線をそれぞれ$\ell_\mathrm{A}$,$\ell_\mathrm{B}$とする.また$\ell_\mathrm{A}$と$\ell_\mathrm{B}$の交点を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の座標は
\[ \left( t+\frac{a}{[ア]},\ t^{[イ]}+(a-[ウ])t-[エ]a+[オ] \right) \]
である.このことから,$t$が変化するとき,点$\mathrm{P}$は曲線
\[ y=x^{[カ]}-[キ]x-\frac{a^{[ク]}}{[ケ]}+[コ] \]
上を動く.
(2)$\mathrm{AB}=\mathrm{AP}$となる実数$t$が存在するための必要十分条件は$\displaystyle a \geqq \frac{[サ]}{[シ]}$である.
大阪薬科大学 私立 大阪薬科大学 2012年 第1問
次の問いに答えなさい.

(1)自然数$m,\ n$に対し,命題「$m^2+n^2$が偶数ならば,$m+n$は偶数である」が真ならば「真」と,偽ならば反例を$[$\mathrm{A]$}$に記入しなさい.
(2)$2^x=5^y=100$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}=[$\mathrm{B]$}$となる.
(3)$xy$座標平面において,円$x^2+y^2=3$と直線$x+y=1$の$2$つの交点を結ぶ線分の長さは,$[$\mathrm{C]$}$である.
(4)数直線上を動く点$\mathrm{P}$が原点$\mathrm{O}$にある.表と裏が等しい確率で出るコインを投げ,表が出ると正方向に$1$だけ進み,裏が出ると負方向に$1$だけ進むことを繰り返す.コインを$10$回投げるとき,$\mathrm{P}$の座標が$-6$となる確率は,$[$\mathrm{D]$}$である.
(5)方程式$x^3-3x^2-9x-a=0$が異なる$3$つの実数解を持つとき,定数$a$が満たさなければならない条件を$[あ]$で求めなさい.
大阪薬科大学 私立 大阪薬科大学 2012年 第2問
次の問いに答えなさい.多項式$P(x)={(1+x)}^{24}$を考える.

(1)$P(x)$の$x^2$の係数は$[$\mathrm{E]$}$である.
(2)$\comb{24}{0}-\comb{24}{1}+\comb{24}{2}-\comb{24}{3}+\cdots +\comb{24}{22}-\comb{24}{23}+\comb{24}{24}=[$\mathrm{F]$}$である.
(3)$\displaystyle Q(x)=\frac{1}{2} \left( P(x)+P(-x) \right)$とする.このとき,$Q(x)$は$P(x)$の
$\big\{$ (ア)奇数次数の項からなる. (イ)偶数次数の項からなる. (ウ)奇数次数と偶数次数の項からなる. $\bigr\}$
(ア),(イ),(ウ)の中から最も適切なものを選び,その記号を$[$\mathrm{G]$}$に記しなさい.
(4)方程式$x^3=1$の$3$つの解を$1,\ \alpha,\ \beta$とする.

(i) ${(1-\alpha)}^6=[$\mathrm{H]$}$である.
(ii) $\alpha^2-\beta=[$\mathrm{I]$}$である.
(iii) $\displaystyle \sum_{k=0}^{12} \comb{24}{2k} \beta^k$の値を$[い]$で求めなさい.
なお,必要ならば$3^{12}=531441$を使ってよい.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。