タグ「分数」の検索結果

347ページ目:全4648問中3461問~3470問を表示)
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第2問
糸の長さ$L$,おもりの質量$m$の振り子の振れの角(水平面に垂直な直線と糸がなす角)の大きさを$\theta$とすると,$\theta$は時刻$t$の関数として
\[ mL \frac{d^2 \theta}{dt^2}=-mg \theta \cdots\cdots (*) \]
を満たす.ただし重力加速度$g$は一定とする.

(1)$\theta=a \cos (2 \pi \nu t+\delta)$(ただし$\nu,\ a,\ \delta$は定数で$\nu>0$,$a \neq 0$)が時刻$t=t_1$で極大値をとり,その後初めて極小値をとる時刻を$t=t_2$とするとき,$t_2-t_1=[$4$]$である.
(2)$(1)$の$\theta$が$(*)$を満たすとき,$\nu$を求めると$\nu=[$5$]$である.
(3)$(2)$の$\theta$に対して時刻$t$におけるこの振り子のエネルギー$E(t)$を
\[ E(t)=\frac{1}{2} mL^2 \left( \frac{d\theta}{dt} \right)^2+\frac{1}{2}mgL \theta^2 \]
で与えるものとする.このとき$\displaystyle \frac{dE(t)}{dt}=[$6$]$である.
法政大学 私立 法政大学 2012年 第5問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.

$\mathrm{O}$を原点とする座標平面上に点$\mathrm{P}(x,\ y)$がある.

(1)$\theta$は$0<\theta<2\pi$を満たし,行列$A$を
\[ A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
とする.行列$A$が表す移動により,$\mathrm{P}$が点$\mathrm{Q}_1$に移るとするとき,$\mathrm{Q}_1$は$\mathrm{O}$を中心に$\mathrm{P}$を角$[ア]$だけ回転した点である.
ただし,$[ア]$については,以下の$\nagamaruichi$~$\nagamaruroku$から$1$つを選べ.
\[ \nagamaruichi -\theta \qquad \nagamaruni 0 \qquad \nagamarusan \theta \qquad \nagamarushi 2\theta \qquad \nagamarugo 3\theta \qquad \nagamaruroku \theta^2 \]
行列$B$を$\displaystyle B=\frac{1}{3}A$で定める.行列$B$が表す移動により$\mathrm{P}$が点$\mathrm{Q}_2$に移るとするとき,$\displaystyle \mathrm{OQ}_2=\frac{[イ]}{[ウ]} \mathrm{OP}$である.
$\mathrm{P}$が$x$軸方向に$-2$だけ平行移動し,$y$軸方向に$4$だけ平行移動した点を$\mathrm{Q}_3(X,\ Y)$とするとき,
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
[エオ] \\
[カ]
\end{array} \right) \]
が成り立つ.
(2)$\mathrm{P}(x,\ y)$を点$\mathrm{R}(X,\ Y)$に移す移動$T$が
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{lr}
3 & -\sqrt{3} \\
\sqrt{3} & 3
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
14 \\
7
\end{array} \right) \]
で表されている.
移動$T$により,点$\mathrm{B}(p,\ q)$が点$\mathrm{B}(p,\ q)$に移るとするとき,
\[ \left( \begin{array}{c}
p \\
q
\end{array} \right)=\left( \begin{array}{c}
[キク]-\sqrt{[ケ]} \\
[コ] \sqrt{[サ]}-[シ]
\end{array} \right) \]
である.
また,この移動$T$により$\mathrm{P}$が移る点$\mathrm{R}$は,$\theta,\ k$を実数として,点$\mathrm{B}$を中心に$\mathrm{P}$を角$\theta$だけ回転した点を$\mathrm{P}^\prime (x^\prime,\ y^\prime)$とおくと,$\overrightarrow{\mathrm{BR}}=k \overrightarrow{\mathrm{BP}^\prime}$を満たす.つまり,$(1)$の行列$A$を用いると,
\[ \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right)=A \left( \begin{array}{c}
x-p \\
y-q
\end{array} \right),\quad \left( \begin{array}{c}
X-p \\
Y-q
\end{array} \right)=k \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right) \]
が成り立つから,$\displaystyle \theta=\frac{\pi}{[ス]}$,$k=[セ]$である.
ただし,$[セ]$については,以下の$\nagamaruichi$~$\nagamarukyu$から$1$つを選べ.
$\nagamaruichi$ $1$ \qquad $\nagamaruni$ $\sqrt{2}$ \qquad $\nagamarusan$ $\sqrt{3}$ \qquad $\nagamarushi$ $2 \sqrt{2}$ \qquad $\nagamarugo$ $3$
$\nagamaruroku$ $2 \sqrt{3}$ \qquad $\nagamarushichi$ $3 \sqrt{2}$ \qquad $\nagamaruhachi$ $3 \sqrt{3}$ \qquad $\nagamarukyu$ $6$
関西学院大学 私立 関西学院大学 2012年 第2問
実数$x,\ y$が$x^2+y^2-4y+2=0$を満たすとする.$\displaystyle k=\frac{x}{y}$,$\displaystyle z=\frac{x^2+4xy+9y^2}{xy+2y^2}$とおくとき,次の問いに答えよ.

(1)$k$のとりうる値の範囲を求めよ.
(2)$z$を$k$の式で表せ.
(3)$z$の最小値とそのときの$k$の値を求めよ.
(4)$z$の最小値を与える$x$の値は$2$つある.それらを$\alpha,\ \beta$とするとき,$\alpha+\beta$を求めよ.
関西学院大学 私立 関西学院大学 2012年 第4問
$a$を定数とし,$\displaystyle f(x)=\frac{\cos 2x-(a+2) \cos x+a+1}{\sin x}$とするとき,次の問いに答えよ.

(1)極限$\displaystyle \lim_{x \to 0} \frac{\cos x-1}{x^2}$を求めよ.

(2)等式$\displaystyle \lim_{x \to 0} \frac{f(x)}{x}=\frac{1}{2}$が成り立つように定数$a$の値を求めよ.

(3)上の$(2)$で求めた$a$の値に対して定積分$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{f(x)} \, dx$を求めよ.
産業医科大学 私立 産業医科大学 2012年 第3問
自然数$n$と$0$以上の整数$m$に対して,$\displaystyle p_n=\comb{2n}{n} {\left( \frac{1}{2} \right)}^{2n}$,$\displaystyle I_m=\int_0^{\frac{\pi}{2}} \sin^m x \, dx$とおく.次の問いに答えなさい.

(1)すべての自然数$n$について$\displaystyle \left( n+\frac{1}{2} \right) {p_n}^2=\frac{bI_{2n}}{I_{2n+1}}$が成り立つように,定数$b$の値を求めなさい.
(2)$\displaystyle 0<x<\frac{\pi}{2}$のとき,$\sin^m x>\sin^{m+1} x>0$であることを用いて,極限$\displaystyle \lim_{n \to \infty} \sqrt{n} p_n$を求めなさい.
神戸薬科大学 私立 神戸薬科大学 2012年 第4問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)関数$\displaystyle f(x)=\cos^4 x-\sin^4 x+\frac{1}{2} \sin x \sin 2x+3 \cos x (0 \leqq x \leqq \pi)$とする.$t=\cos x$とおき$f(x)$を$t$の式で表すと,$f(x)=[ ]$である.$f(x)$は$\cos x=[ ]$のとき最大値$[ ]$をとり,$\cos x=[ ]$のとき最小値$[ ]$をとる.
(2)半円$C_1:x^2+y^2=2 (y \geqq 0)$と放物線$C_2:y=ax^2+1-a (a<-1)$とで囲まれた図形の面積$S$を求めたい.

(i) $C_1$と$C_2$の交点を求めると$[ ]$である.
(ii) $C_1$と$C_2$のグラフおよび$(1)$で求めた交点を図示せよ.
(iii) 面積$S=[ ]$である.
産業医科大学 私立 産業医科大学 2012年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$に対して,$x$以下の最大の整数を$[x]$で表す.例えば$[3]=3$,$[3.14]=3$,$[-3.14]=-4$である.実数$x$について,方程式$4x-3[x]=0$の解の個数は$[ ]$であり,方程式$x^2-3x+[3x]=0$の解の個数は$[ ]$である.
(2)$a,\ b,\ c$を$a+b+c=\pi$を満たす正の実数とするとき,$\sin (a) \sin (b) \sin (c)$の最大値は$[ ]$である.
(3)原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(1,\ -1,\ 1)$,$\mathrm{C}(1,\ 1,\ -1)$について$\triangle \mathrm{ABC}$は正三角形である.$\triangle \mathrm{ABC}$を$1$つの面にもつ正四面体の他の頂点$\mathrm{D}$の座標は$[ ]$または$[ ]$である.
(4)定積分$\displaystyle \int_3^4 \frac{6x+5}{x^3-3x-2} \, dx$の値は$[ ]$である.
(5)$123$から$789$までの$3$桁の数から,$1$つを無作為に選び出すとき,同じ数字が$2$つ以上含まれている確率は$[ ]$である.
(6)数直線上の点$\mathrm{P}$は,原点$\mathrm{O}$を出発して,次のルールに従って移動するとする.
「$1$つのさいころを振り,$3$以下の目が出たときは右に$1$,$5$以上の目が出たときは左に$1$,それぞれ動く.また,$4$の目が出たときは動かない.点$\mathrm{P}$の座標が$-1$になったら,さいころを振るのを止め点$\mathrm{P}$はそこにとどまる.それ以外のときは,さいころをまた振る.」
さいころを多くとも$3$回振り移動も終えた後の,点$\mathrm{P}$の座標の期待値は$[ ]$である.
産業医科大学 私立 産業医科大学 2012年 第2問
座標平面上の原点を$\mathrm{O}$とする.中心が$\mathrm{O}$,半径が$1$の円を$C$とする.円$C$の外部の点を$\mathrm{P}(x_0,\ y_0)$とする.点$\mathrm{P}$を通り円$C$に接する$2$直線を$\ell_1$,$\ell_2$とする.このとき,次の問いに答えなさい.

(1)直線$\ell_1$,$\ell_2$と円$C$の$2$つの接点を結ぶ線分の中点の座標を,点$\mathrm{P}$の座標$x_0$と$y_0$で表しなさい.
(2)直線$\ell_1$,$\ell_2$は$y$軸に平行でないとする.直線$\ell_1$,$\ell_2$と$y$軸の交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の中点を$\mathrm{M}$とする.ただし,点$\mathrm{Q}$と$\mathrm{R}$が一致するときは,点$\mathrm{M}$は点$\mathrm{Q}$,$\mathrm{R}$と一致する点とする.このとき,点$\mathrm{M}$の$y$座標が$2$となる点$\mathrm{P}$の描く曲線と直線$\displaystyle y=\frac{1}{\sqrt{3}}x+1$で囲まれる図形の面積を求めなさい.
千葉工業大学 私立 千葉工業大学 2012年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3 \sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}=[ア]+\sqrt{[イウ]}$である.
(2)整式$x^3-4x^2+7x+1$を$x^2-3x+2$で割った余りは$[エ]x+[オ]$である.
(3)$\displaystyle 3^{2x} \leqq \frac{9}{{27}^x}$をみたす$x$の範囲は$\displaystyle x \leqq \frac{[カ]}{[キ]}$である.
(4)直線$2x+3y+5=0$と点$(-4,\ 1)$において垂直に交わる直線の方程式は$\displaystyle y=\frac{[ク]}{[ケ]}x+[コ]$である.
(5)円$x^2+y^2=9$と円$x^2+(y+a)^2=9$が共有点をもつような定数$a$の値の範囲は$[サシ] \leqq a \leqq [ス]$である.
(6)$\overrightarrow{a}=(k,\ -2k,\ 5)$が$\overrightarrow{b}=(1,\ -2,\ -2)$に垂直であるとき,$k=[セ]$であり,$|\overrightarrow{a}|=[ソ] \sqrt{[タ]}$である.
(7)$1$個のサイコロを振り,出た目を$4$で割った余りを$X$とする.$X=1$となる確率は$\displaystyle \frac{[チ]}{[ツ]}$であり,また,$X$の期待値は$\displaystyle \frac{[テ]}{[ト]}$である.
(8)関数$\displaystyle f(x)=\frac{1}{3}x^3-ax^2+3x+1$($a$は定数)が$x=3$で極値をとるとき,$a=[ナ]$であり,極大値は$\displaystyle \frac{[ニ]}{[ヌ]}$である.
千葉工業大学 私立 千葉工業大学 2012年 第2問
次の各問に答えよ.

(1)放物線$C:y=-x^2+4x+5$の頂点を$\mathrm{A}$とし,$C$と$x$軸の正の部分との交点を$\mathrm{B}$とする.このとき,$\mathrm{A}([ア],\ [イ])$であり,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の方程式は$y=[ウエ]x+[オカ]$である.また,$C$の$0 \leqq x \leqq [ア]$の部分,$y$軸,および$\ell$で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を$a_1=-3$,$a_2=1$,
\[ a_{n+2}=-2a_{n+1}-4a_n \cdots\cdots① \]
で定める.このとき,
\[ a_{n+3}=-2a_{n+2}-4a_{n+1} \cdots\cdots② \]
であり,$②$に$①$を代入すると$a_{n+3}=[コ]a_n$となる.$b_n=a_{3n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,数列$\{b_n\}$は初項$[サシ]$,公比$[ス]$の等比数列であり,$b_n$が初めて$7$桁の数になるのは$n=[セ]$のときである.ただし,$\log_{10}2=0.3010$とする.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。