タグ「分数」の検索結果

341ページ目:全4648問中3401問~3410問を表示)
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)不等式$x^2-x-6<0$の解は$[$1$]$であり,不等式$x^2-|x|-6<0$の解は$[$2$]$である.
(2)放物線$y=-x^2+4x$の頂点の座標は$[$3$]$である.また,この放物線を$x$軸方向に$[$4$]$,$y$軸方向に$[$5$]$だけ平行移動した放物線の方程式は$y=-x^2-2x-3$である.
(3)$x$についての不等式$\log_{\alpha}(3-x)-\log_{\alpha}(2x-3) \leqq 2$の解は,$\displaystyle \alpha=\frac{1}{2}$のとき$[$6$]$であり,$\alpha=2$のとき$[$7$]$である.
(4)$1$個のさいころを$3$回投げるとき,$3$回とも同じ目が出る確率は$[$8$]$である.また,目の和が$7$になる確率は$[$9$]$である.
(5)$(x-2)^{50}=a_0+a_1x+\cdots +a_{50}x^{50}$($a_0,\ a_1,\ \cdots,\ a_{50}$は実数)のとき,$a_{47}$の値は$[$10$]$であり,$a_0+a_1+\cdots +a_{50}$の値は$[$11$]$である.
広島修道大学 私立 広島修道大学 2012年 第2問
次の問に答えよ.

(1)次の等式が成り立つことを証明せよ.

(i) $\cos (\alpha+\beta+\gamma)+\cos (\alpha+\beta-\gamma)=2 \cos (\alpha+\beta) \cos \gamma$
(ii) $\displaystyle \cos \alpha \cos \beta \cos \gamma=\frac{1}{4} \biggl\{ \cos (\alpha+\beta-\gamma)+\cos (\beta+\gamma-\alpha)$
\qquad\qquad\qquad\qquad\quad $+\cos (\gamma+\alpha-\beta)+\cos (\alpha+\beta+\gamma) \biggr\}$

(2)$\triangle \mathrm{ABC}$において次の等式が成り立つことを証明せよ.
\[ \sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \]
(注意)なお,次の公式を用いてもよい.
\[ \cos \theta_1+\cos \theta_2=2 \cos \frac{\theta_1+\theta_2}{2} \cos \frac{\theta_1-\theta_2}{2} \]
広島修道大学 私立 広島修道大学 2012年 第2問
次の問に答えよ.

(1)$0 \leqq \theta<\pi$のとき,次の連立不等式を解け.
\[ \left\{ \begin{array}{l}
\cos 2\theta>\sin \theta \\
\displaystyle \sin 2\theta<\frac{1}{\sqrt{2}}
\end{array} \right. \]
(2)$a,\ b$を定数とし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$とするとき,次の問に答えよ.

(i) 方程式$\sin^2 x+\sin x+a=0$が解をもつような$a$の範囲を求めよ.
(ii) 方程式$\sin^2 x-\sin x+b=0$が解をもつような$b$の範囲を求めよ.
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
\displaystyle \frac{1}{3}x-7 \leqq 2 \\ \\
\displaystyle \frac{3}{2}x+3>-\frac{3}{4}x+1
\end{array} \right. \]
の解は$[$1$]$である.
(2)$2$点$(5,\ 1)$,$(-2,\ 4)$を通る直線の方程式は$[$2$]$である.
(3)直線$y=ax-3$が放物線$y=x^2-4x+3a$の接線であるとき,定数$a$の値は$[$3$]$である.
(4)$\displaystyle \sqrt{3} \sin \frac{\pi}{4}-\sqrt{6} \cos \frac{\pi}{3}$の値は$[$4$]$,$\displaystyle \sin \frac{\pi}{9} \sin \frac{\pi}{18}-\cos \frac{\pi}{9} \cos \frac{\pi}{18}$の値は$[$5$]$である.
(5)赤玉が$4$つ,青玉が$3$つ,黄玉が$2$つある.これらすべての玉を$1$列に並べる並べ方は$[$6$]$通りである.これらの玉をすべて$1$つの袋に入れ,そのうち$3$つを同時に取り出すとき,異なる色の玉を取り出す確率は$[$7$]$であり,赤玉$2$つ,青玉$1$つを取り出す確率は$[$8$]$である.また,すべての玉が入った袋から玉を$4$つ同時に取り出すとき,青玉が少なくとも$1$つ含まれる確率は$[$9$]$である.
(6)$2$次関数$f(x)$は,$\displaystyle x=-\frac{3}{4}$で極値をとり,$f(-1)=-2$,$f^\prime(2)=11$を満たす.このとき,$f(x)=[$10$]$であり,$\displaystyle \int_{-1}^2 f(x) \, dx$の値は$[$11$]$である.
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$a,\ b$を実数とする.$2$次方程式$x^2+ax+b=0$の$1$つの解$\alpha$が$1-\sqrt{3}i$のとき,$a=[$1$]$,$b=[$2$]$となる.もう$1$つの解を$\beta$とするとき,$\alpha-2$,$\beta-2$を解とし,$x^2$の係数が$1$である$2$次方程式は$x^2+[$3$]x+[$4$]=0$となる.
(2)$a=\sqrt{3}$のとき,$|a-2|+|a+3|$の値は$[$5$]$である.また,方程式$|x+1|=4$の解は$[$6$]$である.
(3)$2+\sqrt{2}$の整数部分を$a$,小数部分を$b$とするとき,$\displaystyle 2a^2-\left( b^3+\frac{1}{b^3} \right)$の値は$[$7$]$である.
(4)$1$個のさいころを投げて,出た目が奇数なら$2$ポイント,偶数なら$4$ポイント獲得できるゲームがある.$1$回投げて獲得できるポイントの期待値は$[$8$]$である.また,さいころを$3$回投げたとき,獲得したポイントの合計が$12$である確率は$[$9$]$であり,$10$以上である確率は$[$10$]$である.
(5)放物線$y=x^3-3x^2+2$上の点$(1,\ 0)$における接線の方程式は$[$11$]$である.
酪農学園大学 私立 酪農学園大学 2012年 第1問
次の各問いに答えよ.

(1)$(xy+1)(x+1)(y+1)+xy$を因数分解せよ.
(2)$\displaystyle \sin \theta+\cos \theta=\frac{3}{5} (0^\circ \leqq \theta \leqq 180^\circ)$のとき,$\sin \theta \cos \theta$の値を求めよ.

(3)$\displaystyle \frac{2 \sqrt{7}}{\sqrt{5}+1}-\frac{\sqrt{5}}{\sqrt{7}+\sqrt{5}}$の分母を有理化して簡単にせよ.

(4)$8$個の異なる荷物を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人に分けるとき,$\mathrm{A}$に$3$個,$\mathrm{B}$に$2$個,$\mathrm{C}$に$3$個のように分ける方法は何通りあるか.
(5)方程式$x^2+(2a+1)x+a+1=0$が実数解をもつように,定数$a$の値の範囲を求めよ.
(6)$2$次関数$y=x^2-2mx+3m$の最小値を$k$とするとき,$k$の最大値とそのときの$m$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第1問
以下の問に答えよ.

(1)$2$次関数$\displaystyle y=-\frac{3}{2}x^2+5x-3 (-1 \leqq x \leqq 2)$の最大値を求めよ.
(2)$2$次方程式$\displaystyle x^2+kx+k^2+\frac{7}{2}k-6=0$が異なる$2$つの実数解を持つとき,定数$k$の値の範囲は$A<k<B$のようになる.$A,\ B$の値を求めよ.

(3)式$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{7}+\sqrt{5}+\sqrt{2}}$の分母を有理化すると,$\displaystyle \frac{A \sqrt{10}+B \sqrt{35}+C \sqrt{14}}{20}$となるという.$A,\ B,\ C$の値を求めよ.
(4)不等式$3 |x+3|>4+x$の解は,$x<A,\ B<x$のようになる.$A,\ B$の値を求めよ.
(5)$2$つの放物線$y=2x^2-4x+7$と$y=-3x^2+8x+6$の$2$つの共有点と,点$(3,\ 5)$を通る放物線の方程式は,$y=Ax^2+Bx+C$となる.定数$A,\ B,\ C$の値を求めよ.
北海道医療大学 私立 北海道医療大学 2012年 第1問
以下の問に答えよ.

(1)$2$次関数$\displaystyle y=-\frac{3}{2}x^2+5x-3 (-1 \leqq x \leqq 2)$の最大値を求めよ.
(2)$2$次方程式$\displaystyle x^2+kx+k^2+\frac{7}{2}k-6=0$が異なる$2$つの実数解を持つとき,定数$k$の値の範囲は$A<k<B$のようになる.$A,\ B$の値を求めよ.

(3)式$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{7}+\sqrt{5}+\sqrt{2}}$の分母を有理化すると,$\displaystyle \frac{A \sqrt{10}+B \sqrt{35}+C \sqrt{14}}{20}$となるという.$A,\ B,\ C$の値を求めよ.
(4)不等式$3 |x+3|>4+x$の解は,$x<A,\ B<x$のようになる.$A,\ B$の値を求めよ.
(5)$2$つの放物線$y=2x^2-4x+7$と$y=-3x^2+8x+6$の$2$つの共有点と,点$(3,\ 5)$を通る放物線の方程式は,$y=Ax^2+Bx+C$となる.定数$A,\ B,\ C$の値を求めよ.
青山学院大学 私立 青山学院大学 2012年 第2問
次の定積分を求めよ.

(1)$\displaystyle \int_{\frac{1}{2}}^2 x \log x \, dx=\frac{[コサ]}{[シ]} \log [ス]-\frac{[セソ]}{[タチ]}$

(2)$\displaystyle \int_0^2 (x^2+2x+3) \log (x+1) \, dx=[ツテ] \log [ト]-\frac{[ナニ]}{[ヌ]}$
青山学院大学 私立 青山学院大学 2012年 第5問
曲線$\displaystyle \frac{(x-5)^2}{4}+\frac{y^2}{9}=1$を$C$とする.

(1)曲線$C$の概形を描け.
(2)曲線$C$で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積$V_1$を求めよ.
(3)曲線$C$で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V_2$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。