タグ「分数」の検索結果

340ページ目:全4648問中3391問~3400問を表示)
関西大学 私立 関西大学 2012年 第1問
次の問いに答えよ.

(1)$0 \leqq \theta < 2\pi$のとき,不等式$\displaystyle \sin \theta \geqq \frac{1}{2}$を満たす$\theta$の値の範囲を求めよ.
(2)$\theta$が$(1)$で求めた範囲を動くとき,$f(\theta)=\sin \theta+\cos \theta$の最大値と最小値を求めよ.またそのときの$\theta$の値を求めよ.
関西大学 私立 関西大学 2012年 第2問
次の$[ ]$を数値でうめよ.

数列$\{a_n\}$の初項から第$n$項までの和を$S_n$と表すとき,すべての自然数$n$について
\[ 3S_n=a_n+7 \cdot 3^n-6 \]
が成立するとする.このとき,$a_1=[$①$]$であり,すべての自然数$n$について
\[ a_{n+1}=[$②$]a_n+[$③$] \cdot 3^n \]
が成立する.いま,$\displaystyle b_n=\frac{a_n}{3^n}$とおくと,
\[ b_n=[$④$] \cdot ([$⑤$])^{n-1}+[$⑥$] \]
と表される.したがって,$a_n$が得られる.
関西大学 私立 関西大学 2012年 第1問
$x$と$y$についての連立方程式
\[ \left\{ \begin{array}{l}
3^{x+2y}+2^{4x+2y-3}=\displaystyle \frac{97}{3} \\ \\
3^{x+2y+2}-4^{2x+y-2}=-13
\end{array} \right. \qquad \cdots\cdots(*) \]
を考える.次の問いに答えよ.

(1)$X=3^{x+2y},\ Y=2^{4x+2y}$とおいて,連立方程式$(*)$を$X,\ Y$についての連立$1$次方程式に書きかえて,それを解いて$X$と$Y$の値を求めよ.
(2)連立方程式$(*)$を解け.
神奈川大学 私立 神奈川大学 2012年 第1問
次の空欄を適当に補え.

(1)放物線$\displaystyle y=x^2-x+\frac{7}{4}$の頂点の座標は$[ア]$である.
(2)多項式$P(x)$を$x-2$で割ると余りは$3$であり,$x+3$で割ると余りは$-7$である.また,$P(x)$を$(x-2)(x+3)$で割ると商は$x+1$であるが,割り切れない.この$P(x)$を$x+1$で割ると余りは$[イ]$である.
(3)赤い玉$2$個,黄色い玉$3$個,青い玉$4$個が入っている袋から,よくかき混ぜて玉を同時に$3$個取り出すとき,$3$個の玉の色が$2$種類である確率は$[ウ]$である.
(4)$2$つの曲線$y=a-x^2$,$y=x^2+2ax+b$が$x=3$で共通の接線をもつような$a,\ b$の値は$a=[エ]$,$b=[オ]$である.
神奈川大学 私立 神奈川大学 2012年 第1問
次の空欄を適当に補え.

(1)方程式$8 \times 8^x+7 \times 4^x=2^x$の解は$x=[$(\mathrm{a])$}$である.
(2)$\mathrm{O}$を原点$(0,\ 0,\ 0)$とする.ベクトル$\overrightarrow{\mathrm{OP}}=(p,\ q,\ r)$が,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$を通る平面に垂直で,$|\overrightarrow{\mathrm{OP}}|=1$,$p>0$を満たしているとき,$\overrightarrow{\mathrm{OP}}=[$(\mathrm{b])$}$である.
(3)$a_1=8$,$\displaystyle a_{n+1}=\frac{5}{4}a_n-10 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[$(\mathrm{c])$}$である.
(4)正八面体の各面に$1$から$8$の数字を$1$つずつ書いた八面体サイコロが$2$つある.この$2$つを同時に投げたとき,少なくとも$1$つは$1$の目が出る確率は$[$(\mathrm{d])$}$である.

(5)関数$\displaystyle y=\frac{\log x}{x}$は,$x=[$(\mathrm{e])$}$のとき最大値をとる.

(6)$a \neq 0$とする.方程式$x^3-(a+1)x+a=0$が$1$以外の解を重解としてもつとき,$a=[$(\mathrm{f])$}$であり,そのときの重解は$x=[$(\mathrm{g])$}$である.
関西大学 私立 関西大学 2012年 第2問
$a$を実数の定数とし,曲線$x^2+4y^2-2x-3=0$を$C_1$とし,円$(x-a)^2+y^2=4$を$C_2$とする.次の$[ ]$をうめよ.

(1)曲線$C_1$は楕円$\displaystyle \frac{x^2}{[$①$]}+\frac{y^2}{[$②$]}=1$を$x$軸方向に$[$③$]$だけ平行移動した楕円を表す.
(2)曲線$C_1$と円$C_2$が共有点をもつような$a$の値の範囲は$[$④$]$である.
(3)$a=0$のとき,$C_1$と$C_2$の共有点は$2$点あり,そのうち$y$座標が正である点を$\mathrm{P}$とする.点$\mathrm{P}$の$x$座標の値は$\displaystyle \frac{-1+2 \sqrt{[$⑤$]}}{3}$である.また,点$\mathrm{P}$における$C_1$の接線が$x$軸と交わる点の$x$座標の値は$3+\sqrt{[$⑥$]}$であり,点$\mathrm{P}$における$C_2$の接線が$x$軸と交わる点の$x$座標の値は$\displaystyle \frac{8 \sqrt{10}+[$④chi$]}{13}$である.
関西大学 私立 関西大学 2012年 第3問
$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right) (b \neq 0)$が表す$1$次変換を$f$とする.点$\mathrm{P}(c,\ 0) (c>0)$を考える.次の問いに答えよ.

(1)次の$[$①$]$から$[$④$]$を数値でうめよ.
点$\mathrm{Q}(3,\ 4)$を,点$\mathrm{R}(1,\ 2)$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点の座標は
\[ \left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\ \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right) \left( \begin{array}{c}
3-[$①$] \\ \\
4-[$②$]
\end{array} \right)+\left( \begin{array}{c}
[$①$] \\ \\
[$②$]
\end{array} \right) \]
を計算することにより,$([$③$],\ [$④$])$である.

(2)$B=\left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right)$,$V=\left( \begin{array}{c}
c \\
0
\end{array} \right)-A \left( \begin{array}{c}
c \\
0
\end{array} \right)$,$O=\left( \begin{array}{c}
0 \\
0
\end{array} \right)$とおく.

点$\mathrm{P}$を,点$f(\mathrm{P})$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点が$(f \circ f)(\mathrm{P})$と一致するという条件を$A,\ B,\ V,\ O$を用いて表すと,$([$⑤$])V=O$と表すことができる.$A$と$B$を用いて$[$⑤$]$をうめよ.
(3)$3$点$\mathrm{P}$,$f(\mathrm{P})$,$(f \circ f)(\mathrm{P})$が正三角形の$3$つの頂点をなすとき,$a,\ b$の値を求めよ.
(4)$(3)$の正三角形の$1$辺の長さが$1$になるとき,$c$の値を求めよ.
関西大学 私立 関西大学 2012年 第3問
次の$[ ]$を数値でうめよ.

放物線$y=ax^2+bx+c$の頂点の$x$座標は$\displaystyle \frac{11}{12}$であり,この放物線は$x$座標が$1$の点で直線$\displaystyle y=\frac{x}{3}+1$に接している.このとき,$a=[$①$]$,$b=[$②$]$,$c=[$③$]$である.この$a,\ b,\ c$に対し,$f(x)$を
\[ f(x)=\left\{ \begin{array}{lll}
ax^2+bx+c & & x \leqq 1 \\ \\
\displaystyle \frac{x}{3}+1 & & x>1
\end{array} \right. \]
と定め
\[ F(t)=\int_t^{t+1} f(x) \, dx \]
とおく.このとき,$F(t)$は$0 \leqq t \leqq 1$である$t$に対し
\[ F(t)=[$④$]t^3+[$⑤$]t^2-[$⑥$]t+\frac{11}{6} \]
と表される.$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$F(t)$の値が最小になるのは$t=[$④chi$]$のときである.
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
広島修道大学 私立 広島修道大学 2012年 第2問
$\mathrm{A}$と$\mathrm{B}$の$2$人がじゃんけんを行う.$\mathrm{A}$が「グー」,「チョキ」,「パー」を出す確率はそれぞれ$\displaystyle \frac{4}{9},\ \frac{1}{3},\ \frac{2}{9}$であり,$\mathrm{B}$が「グー」,「チョキ」,「パー」を出す確率はそれぞれ$p,\ q,\ r$である.$1$回のじゃんけんで$\mathrm{A}$の勝つ確率が$\displaystyle \frac{1}{3}$であるとき,次の各問に答えよ.

(1)$1$回のじゃんけんであいこになる確率を$p$で表せ.
(2)$1$回のじゃんけんで$\mathrm{B}$の勝つ確率を$p$で表せ.
(3)$\mathrm{A}$と$\mathrm{B}$が$2$回じゃんけんを行う.$2$回のじゃんけんが独立であるとき,$2$回のうち$1$回はあいこで$1$回は$\mathrm{B}$が勝つ確率が$\displaystyle \frac{2}{9}$となる$p$の値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。