タグ「分数」の検索結果

336ページ目:全4648問中3351問~3360問を表示)
中央大学 私立 中央大学 2012年 第1問
次の問に答えよ.

(1)$a>0$,$a \neq 1$,$M>0$とする.$a$を底とする$M$の対数$\log_aM$の定義を述べよ.

(2)$(1)$で述べた定義に基づいて底の変換公式$\displaystyle \log_aM=\frac{\log_bM}{\log_ba}$を証明せよ.ただし,$a,\ b,\ M$は正の実数で,$a \neq 1$,$b \neq 1$である.
(3)$m \log_3p+n \log_9q=2$を満たす正の整数$m,\ n$が存在するような正の整数の組$(p,\ q)$をすべて求めよ.
中央大学 私立 中央大学 2012年 第3問
以下の設問に答えよ.

(1)実数$a,\ b$および実数$x$に対し,
\[ F(x)=\int_{-1}^{2x+1} (at^2+b) \, dt \]
と定める.このとき$F(x)$の導関数$\displaystyle \frac{d}{dx}F(x)$を$a,\ b$を用いて表せ.
(2)正の実数$x$に対し,
\[ G(x)=\int_{-1}^{2x+1} |t-x| \, dt \]
と定める.このとき$G(x)$の導関数$\displaystyle \frac{d}{dx}G(x)$を求めよ.
上智大学 私立 上智大学 2012年 第2問
$xy$平面上で次の不等式の表す領域を$D$とする.
\[ \log_2(2y+1)-1 \leqq \log_2x \leqq 2+\log_2y \leqq \log_2x+\log_2(4-2x) \]

(1)$D$は次の不等式
\[ x \leqq [ケ]y \leqq [コ]x^2+[サ]x \]
および
\[ y \leqq [シ]x+\frac{[ス]}{[セ]} \]
により定まる領域である.

(2)$D$の面積は$\displaystyle \frac{[ソ]}{[タ]}$である.

(3)$s<1$とし,点$(x,\ y)$が$D$上を動くとき,$y-sx$の最大値を$f(s)$とする.

(i) $[チ] \leqq s<1$のとき,$\displaystyle f(s)=[ツ]s+\frac{[テ]}{[ト]}$
(ii) $\displaystyle \frac{[ナ]}{[ニ]} \leqq s<[チ]$のとき,
\[ f(s)=\frac{[ヌ]}{[ネ]}s^2+[ノ]s+\frac{[ハ]}{[ヒ]} \]
(iii) $\displaystyle s<\frac{[ナ]}{[ニ]}$のとき,$\displaystyle f(s)=\frac{[フ]}{[ヘ]}s+\frac{[ホ]}{[マ]}$である.
中央大学 私立 中央大学 2012年 第2問
$\mathrm{O}$を$xy$平面の原点とする.以下の設問に答えよ.

(1)$xy$平面上の点$\mathrm{A}(a_1,\ a_2)$と点$\mathrm{B}(b_1,\ b_2)$を考える.
\[ a_1>0,\quad a_2>0,\quad b_1>0,\quad b_2<0 \]
であるとき,$\triangle \mathrm{AOB}$の面積を$a_1,\ a_2,\ b_1,\ b_2$を用いて表せ.
(2)対数関数
\[ f(x)=\log_2x,\quad g(x)=\log_{\frac{1}{4}}x \]
に対し,$xy$平面上の曲線
\[ \begin{array}{ll}
C_1:y=f(x) & (x \geqq 1) \\
C_2:y=g(x) & (x \geqq 1)
\end{array} \]
を考える.$C_1$上に点$\mathrm{S}(s,\ f(s))$,$C_2$上に点$\mathrm{T}(t,\ g(t))$をとる.ただし,$s \cdot t=8$とする.このとき$s$を用いて,$\triangle \mathrm{SOT}$の面積$H(s)$を表せ.
(3)$(2)$の$H(s)$に対し,$H(3)$と$H(4)$の大小を比較せよ.
中央大学 私立 中央大学 2012年 第4問
$\displaystyle f(x)=\sin \left( \log \frac{1}{x} \right) (0<x \leqq 1)$とおく.$f(x)=0$となるすべての$x$を,大きい順に$a_0,\ a_1,\ a_2,\ \cdots$とする.以下の問いに答えよ.

(1)$a_n (n=0,\ 1,\ 2,\ \cdots)$を求めよ.
(2)正の定数$a,\ b$に対し
\[ \frac{d}{dx} (Ae^{-ax} \cos bx+Be^{-ax} \sin bx)=e^{-ax} \cos bx \]
を満たす定数$A,\ B$を求め,不定積分
\[ \int e^{-ax} \cos bx \, dx \]
を求めよ.
(3)$\displaystyle b_n=\int_{a_{n+1}}^{a_n} \{f(x)\}^2 \, dx (n=0,\ 1,\ 2,\ \cdots)$を,$\displaystyle t=\log \frac{1}{x}$とおくことにより求めよ.
(4)$(3)$で得られた数列$\{b_n\}$に対し,無限級数$\displaystyle \sum_{n=0}^\infty b_n$の和を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ヒ]$までに当てはまる数字$0$~$9$を求めよ.ただし,分数は既約分数として表しなさい.

(1)$a$を実数とするとき,方程式
\[ |x|-|x^2-4|+|x+6|=a \]
を考える.この方程式の実数解が$2$個であるための条件は
\[ a<[ア],\quad [イ]<a<[ウ][エ] \]
であり,実数解を持たないための条件は
\[ a>[オ][カ] \]
である.また,次の不等式
\[ |x|-|x^2-4|+|x+6|>2 \]
には,正の整数解が$[キ]$個,負の整数解が$[ク]$個ある.
(2)空間内に点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,それぞれの大きさと内積が
\[ \begin{array}{l}
|\overrightarrow{a}|=9,\quad |\overrightarrow{b}|=12,\quad |\overrightarrow{c}|=\sqrt{42}, \\ \\
\overrightarrow{a} \cdot \overrightarrow{b}=72,\quad \overrightarrow{a} \cdot \overrightarrow{c}=57,\quad \overrightarrow{b} \cdot \overrightarrow{c}=48
\end{array} \]
であるとする.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角は$\displaystyle \frac{1}{[ケ]} \pi$であり,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[コ][サ]}{[シ]}$である.ベクトル
\[ \overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直交するのは$\displaystyle s=\frac{[ス]}{[セ]}$,$\displaystyle t=\frac{[ソ]}{[タ]}$のときである.したがって,四面体$\mathrm{OABC}$の体積は$[チ][ツ]$である.
(3)三角関数についての等式
\[ [テ] \cos^3 \theta-[ト] \cos \theta-\cos 3\theta=0 \]
を利用して,$t$に関する$3$次方程式
\[ [テ]t^3-[ト]t-\frac{\sqrt{2}}{2}=0 \]
を解いたとき,$\displaystyle \cos \frac{3}{4} \pi$が解の$1$つであることがわかる.したがって,この方程式の残りの$2$つの解は
\[ \cos \frac{[ナ]}{12} \pi=\frac{\sqrt{[ニ]}+\sqrt{[ヌ]}}{[ネ]} \]

\[ \cos \frac{[ノ]}{12} \pi=\frac{\sqrt{[ニ]}-\sqrt{[ヌ]}}{[ネ]} \]
となる.これより,
\[ \tan \frac{[ナ]}{12} \pi=[ハ]-\sqrt{[ヒ]} \]
となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
以下の文章の空欄に適切な数,式または行列を入れて文章を完成させなさい.ただし$(2)$において,適切な行列が複数個ある場合は,それらをすべて記入しなさい.

(1)$a_1=1$,$a_2=4$,$a_{n+2}=-a_{n+1}+2a_n (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[あ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換により点$\mathrm{B}(1,\ 1)$と点$\mathrm{C}(1,\ 0)$はそれぞれ点$\mathrm{B}^\prime$と点$\mathrm{C}^\prime$に移されるとする.また$\mathrm{O}(0,\ 0)$を原点とする.$\overrightarrow{\mathrm{OB}^\prime}=2 \overrightarrow{\mathrm{OB}}$,かつ$\triangle \mathrm{OB}^\prime \mathrm{C}^\prime$が正三角形となるような行列$A$をすべて求めると$A=[い]$である.
(3)媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\displaystyle \frac{e^t+3e^{-t}}{2} \\ \\
y=e^t-2e^{-t}
\end{array} \right. \]
と表される曲線$C$の方程式は
\[ [う]x^2+[え]xy+[お]y^2=25 \]
である.
また曲線$C$の接線の傾きは,$t=[か]$に対応する点において$-2$となる.
(4)$\alpha>1$を実数とする.$0 \leqq x \leqq 1$を定義域とする関数$f(x)=x-x^\alpha$が最大値をとる点を$x(\alpha)$とすると$x(\alpha)=[き]$である.また$\displaystyle \lim_{\alpha \to 1+0} x(\alpha)=[く]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$xy$平面上で点$\mathrm{P}$は$x$軸上に,点$\mathrm{Q}$は$y$軸上に置かれ,点$\mathrm{P}$の$x$座標と点$\mathrm{Q}$の$y$座標はそれぞれ$-2$以上$2$以下の整数であるとする.点$\mathrm{P}$,$\mathrm{Q}$に対して次の操作を考える.
\begin{screen}
{\bf 操作} \\
点$\mathrm{P}$の座標が$(i,\ 0)$,点$\mathrm{Q}$の座標が$(0,\ j)$であるとき次の規則に従って$2$点$\mathrm{P}$,$\mathrm{Q}$を互いに独立に同時に処理する.

\mon[$(\mathrm{P}1)$] $-1 \leqq i \leqq 1$ならば点$\mathrm{P}$を$(i+1,\ 0)$または$(i-1,\ 0)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{P}2)$] $i=-2$ならば点$\mathrm{P}$を必ず$(-1,\ 0)$に移す.
\mon[$(\mathrm{P}3)$] $i=2$ならば点$\mathrm{P}$をそのままにしておく.
\mon[$(\mathrm{Q}1)$] $-1 \leqq j \leqq 1$ならば点$\mathrm{Q}$を$(0,\ j+1)$または$(0,\ j-1)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{Q}2)$] $j=-2$ならば点$\mathrm{Q}$を必ず$(0,\ -1)$に移す.
\mon[$(\mathrm{Q}3)$] $j=2$ならば点$\mathrm{Q}$をそのままにしておく.

\end{screen}
さて,$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている状態から始め,上の操作を$3$回繰り返し行う.

(1)$3$回の操作の後,点$\mathrm{P}$が$(1,\ 0)$に置かれている確率は$[あ]$であり,$(-1,\ 0)$に置かれている確率は$[い]$である.
(2)$xy$平面上で不等式$y>x$の表す領域を$A$,不等式$y>-x$の表す領域を$B$とする.各回の操作後に点$\mathrm{P}$が常に$A \cup B$内に置かれているという事象を$U$とし,各回の操作後に点$\mathrm{Q}$が常に$A \cup B$内に置かれているという事象を$V$とすると,事象$U \cup V$の確率は$[う]$である.
$xy$平面上で$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分の長さを$\mathrm{PQ}$とする.ただし$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている場合は$\mathrm{PQ}=0$とする.
(3)$3$回の操作を通じてちょうど$1$回だけ$\mathrm{PQ}=\sqrt{2}$となる確率は$[え]$である.
(4)$3$回の操作を通じた$\mathrm{PQ}$の最大値の期待値は$[お]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$\displaystyle 0 \leqq \alpha<\beta \leqq \frac{\pi}{2}$かつ$R>0$とする.極座標$(r,\ \theta)$に関する条件
\[ 0 \leqq r \leqq R,\quad \alpha \leqq \theta \leqq \beta \]
により定まる図形を$x$軸のまわりに回転させて得られる立体の体積を$T$とする.$T$を$\alpha,\ \beta,\ R$を用いた式で表すと
\[ T=[あ] \]
である.
(2)極方程式$r=f(\theta) (0 \leqq \theta \leqq \alpha)$で表される曲線$C$と,$\theta=\alpha$で表される直線$\ell$および$x$軸の正の部分で囲まれた図形を$S$とする.ただし$\displaystyle 0<\alpha<\frac{\pi}{2}$とし,関数$f(\theta)$は連続かつ$f(\theta)>0$をみたし,$0 \leqq \theta \leqq \alpha$において増加または減少または定数とする.
$S$を$x$軸のまわりに回転させて得られる立体の体積を$V(\alpha)$とすると
\[ \frac{d}{d\alpha}V(\alpha)=[い] \]
であり,したがって
\[ V(\alpha)=[う] \]
である.また$S$を直線$\ell$のまわりに回転させて得られる立体の体積を$W(\alpha)$とすると
\[ W(\alpha)=[え] \]
である.
(3)$(2)$において$f(\theta)=\sqrt[3]{\cos \theta}$とするとき$\displaystyle V \left( \frac{\pi}{4} \right)$,$\displaystyle W \left( \frac{\pi}{4} \right)$の値を求めると
\[ V \left( \frac{\pi}{4} \right)=[お],\quad W \left( \frac{\pi}{4} \right)=[か] \]
である.
東京理科大学 私立 東京理科大学 2012年 第2問
$a$を正の定数とし,座標平面において放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$を考える.ただし,$t>0$とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸の交点を$\mathrm{R}$とする.$x$軸上の点$\mathrm{Q}$を,$\mathrm{RP}=\mathrm{RQ}$を満たし,その$x$座標が$\mathrm{R}$の$x$座標より大きいものとする.

(1)点$\mathrm{P}$を通り$\ell$と直交する直線の方程式を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\ell$と点$\mathrm{P}$において接し$x$軸とも接する円で,中心が第$1$象限にあるものを考える.この円の中心の座標を$(q,\ r)$とするとき,$q,\ r$を$t$と$a$を用いて表せ.
(4)$(3)$の$q,\ r$に対して,$t$が$0$に限りなく近づくときの,$\displaystyle \frac{q}{t},\ \frac{r}{t^2},\ \frac{r}{q^2}$の極限値をそれぞれ求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。