タグ「分数」の検索結果

335ページ目:全4648問中3341問~3350問を表示)
上智大学 私立 上智大学 2012年 第3問
座標平面上の点$(x,\ y)$のうち,$x,\ y$がともに整数である点を格子点とよぶ.いま,格子点の集合$A$を次のように定義する.
\[ A=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq 0,\ 16<x^2+y^2 \leqq 36,\ x \text{と} y \text{は整数} \} \]

(1)$A$の点は全部で$[ム]$個ある.
(2)格子点上を$1$秒間に右または上に$1$動く点$\mathrm{P}$を考える.$\mathrm{P}$は原点から出発し,$A$の点の$1$つに到達したら停止する.このとき,$\mathrm{P}$が到達できない$A$の点は全部で$[メ]$個ある.以下,$\mathrm{P}$が到達できる$A$の部分集合を$A_0$とする.
(3)$(2)$で考えた点$\mathrm{P}$が右に動く確率と上に動く確率をともに$\displaystyle \frac{1}{2}$とする.また,各格子点における$\mathrm{P}$の動きは,その点に至るまでの動き方と独立に決まるものとする.

(i) 原点からの経路の数が最も多い$A_0$の点は$\mathrm{Q}([モ],\ [ヤ])$であり,$\mathrm{P}$が$\mathrm{Q}$に到達する確率は$\displaystyle \frac{[ユ]}{[ヨ]}$である.
(ii) 原点からの経路の数が$\mathrm{Q}$の次に多い$A_0$の点は全部で$[ラ]$個あり,それらの点のいずれかで$\mathrm{P}$が停止する確率は$\displaystyle \frac{[リ]}{[ル]}$である.
(iii) $\mathrm{P}$が$A_0$の点のいずれかで停止するまでの時間の期待値は$\displaystyle \frac{[レ]}{[ロ]}$秒である.
上智大学 私立 上智大学 2012年 第3問
$1$から$9$までの数字が$1$つずつ書かれた$9$枚のカードがある.これらを$3$枚ずつ$3$つのグループに無作為に分け,それぞれのグループから最も大きい数が書かれたカードを取り出す.

(1)取り出された$3$枚のカードの中に$9$が書かれたカードが含まれる確率は$\displaystyle \frac{[ミ]}{[ム]}$である.

(2)取り出された$3$枚のカードの中に$8$が書かれたカードが含まれる確率は$\displaystyle \frac{[メ]}{[モ]}$である.

(3)取り出された$3$枚のカードの中に$3$が書かれたカードが含まれる確率は$\displaystyle \frac{[ヤ]}{[ユ]}$である.

(4)取り出された$3$枚のカードの中に$6$が書かれたカードが含まれる確率は$\displaystyle \frac{[ヨ]}{[ラ]}$である.

(5)取り出された$3$枚のカードに書かれた数の中で,最小の数が$6$である確率は$\displaystyle \frac{[リ]}{[ル]}$である.
西南学院大学 私立 西南学院大学 2012年 第3問
原点を$\mathrm{O}$とし,下図のように$3$つの円$C_1$,$C_2$,$C_3$が互いに接している.$C_2$の中心を$\mathrm{O}_2$,$C_1$と$C_2$の接点を$\mathrm{P}$,$C_2$と$C_3$の接点を$\mathrm{Q}$,$C_3$と$C_1$の接点を$\mathrm{R}$とする.$C_1$と$C_2$の方程式が
\[ C_1:x^2+y^2=\left( \frac{\sqrt{3}-1}{2} \right)^2,\quad C_2:x^2+(y-\sqrt{3})^2=\left( \frac{\sqrt{3}+1}{2} \right)^2 \]
であるとき,以下の問に答えよ.
(図は省略)

(1)$\displaystyle C_3:(x-[シ])^2+y^2=\left( \frac{[ス]-\sqrt{[セ]}}{[ソ]} \right)^2$である.
(2)弧$\mathrm{RP}$は円$C_1$の短い方の弧を指すものとし,他の弧についても同様とする.また扇形$\mathrm{RPO}$とは弧$\mathrm{RP}$を含む扇形とする.このとき,扇形$\mathrm{PQO}_2$の面積は
\[ \frac{[タ]+\sqrt{[チ]}}{[ツテ]}\pi \]
であることより,$3$つの弧$\mathrm{PQ}$,$\mathrm{QR}$,$\mathrm{RP}$で囲まれる図形(図の斜線部)の面積は
\[ \frac{\sqrt{[ト]}}{[ナ]}-\frac{[ニ]-[ヌ] \sqrt{[ネ]}}{[ノ]} \pi \]
である.
東京理科大学 私立 東京理科大学 2012年 第3問
$\{\theta_k\}$を初項$0$,交差$\displaystyle \frac{\pi}{4}$の等差数列,$\{r_k\}$を初項$1$,公比$\displaystyle \frac{1}{2}$の等比数列とし,自然数$k$に対して,行列$A_k$,$B_k$を
\[ A_k=\left( \begin{array}{cc}
r_k \cos \theta_k & r_k \sin \theta_k \\
r_k \sin \theta_k & -r_k \cos \theta_k
\end{array} \right),\quad B_k=\left( \begin{array}{cc}
r_k \cos \theta_k & -r_k \sin \theta_k \\
-r_k \sin \theta_k & -r_k \cos \theta_k
\end{array} \right) \]
とおく.$C_k=A_kA_{k+1}$,$D_k=B_k B_{k+1}$とするとき,次の問いに答えよ.

(1)$C_k$を$k$を用いて表せ.
(2)$D_k$を$k$を用いて表せ.
(3)$m$を自然数とするとき,次の行列の和
\[ \left( \frac{1}{r_kr_{k+1}}C_k \right)^2+\left( \frac{1}{r_kr_{k+1}}C_k \right)^4+\left( \frac{1}{r_kr_{k+1}} C_k \right)^6+\cdots +\left( \frac{1}{r_kr_{k+1}}C_k \right)^{2m} \]
を求めよ.
(4)$C_k^2D_k^2$を求めよ.
(5)次の行列の和
\[ C_1^2D_1^2+2C_2^2D_2^2+3C_3^2D_3^2+\cdots +nC_n^2D_n^2 \]
を$\left( \begin{array}{cc}
x_n & y_n \\
z_n & w_n
\end{array} \right)$とするとき,$\displaystyle \lim_{n \to \infty}x_n$,$\displaystyle \lim_{n \to \infty}y_n$,$\displaystyle \lim_{n \to \infty}z_n$,$\displaystyle \lim_{n \to \infty}w_n$を求めよ.
ただし,必要ならば,実数$a (a>1)$に対して,$\displaystyle \lim_{n \to \infty} \frac{n}{a^n}=0$が成り立つことを用いてよい.
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の式を展開せよ.
\[ (x+1)(x-1)(2x+3)(3x-1) \]
(2)$m$は自然数である.$x$についての$2$次方程式
\[ x^2-2mx+6m-8=0 \]
が,実数解を持たないとき,$m$の値を求めよ.
(3)$0^\circ \leqq \theta \leqq 360^\circ$において,次の関数の最大値と最小値を求めよ.
\[ y=2 \sin^2 \theta+\cos \theta-2 \]
(4)次の定積分の値を求めよ.
\[ \int_1^2 (3x^2+4x+2) \, dx \]
(5)大小$2$つのさいころを投げ,出た目の数をそれぞれ$a,\ b$とするとき,$|a-b| \geqq 3$となる確率を求めよ.
(6)半径$r$の球の体積$\displaystyle V=\frac{4 \pi r^3}{3}$を,$r$で微分して,導関数$V^\prime$を求めよ.これは,半径$r$の球の何を表しているか.
中央大学 私立 中央大学 2012年 第1問
以下の問いに答えよ.

(1)$\sin 3\theta$を$\sin \theta$を用いて表せ.

(2)$\displaystyle \sin \frac{2\pi}{5}=\sin \frac{3\pi}{5}$に着目して$\displaystyle \cos \frac{\pi}{5}$と$\displaystyle \sin \frac{\pi}{5}$の値を求めよ.

(3)積$\displaystyle \sin \frac{\pi}{5} \sin \frac{2\pi}{5} \sin \frac{3\pi}{5} \sin \frac{4\pi}{5}$の値を求めよ.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
中央大学 私立 中央大学 2012年 第1問
実数$A,\ B,\ C$を係数とする$3$次方程式
\[ x^3+Ax^2-B^2x+C=0 \]
は$3$つの互いに異なる実数解$\alpha,\ \beta,\ \gamma$をもち,$\alpha \beta \gamma \neq 0$である.このとき以下の設問に答えよ.

(1)$A,\ B,\ C$を用いて$\displaystyle \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$を表せ.
(2)$A,\ B,\ C$を用いて$\displaystyle \frac{1}{\alpha^2}+\frac{1}{\beta^2}+\frac{1}{\gamma^2}$を表せ.
中央大学 私立 中央大学 2012年 第2問
整数$n$に対し,
\[ f_n(x)=3^nx \quad (x>0) \]
と定める.このとき以下の設問に答えよ.

(1)$\displaystyle \frac{1}{10} \leqq f_n(3)<\frac{243}{10}$となる$n$をすべて求めよ.
(2)正の実数$x$に対し,$\displaystyle \frac{1}{10} \leqq f_n(x)<\frac{243}{10}$を満たす$n$の個数を$N(x)$とする.$N(3)+N(3.5)+N(4)+N(4.5)$の値を求めよ.
中央大学 私立 中央大学 2012年 第3問
正の実数$a$に対し,
\[ f(x)=-x^2+2ax+a \quad (-1 \leqq x \leqq 1) \]
と定め,$f(x)$の最大値を$M(a)$とする.このとき以下の設問に答えよ.

(1)$M(a)$を求めよ.
(2)$\displaystyle L(a)=M(a)-\frac{a^3}{3} (a>0)$とする.$L(a)$の最大値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。