タグ「分数」の検索結果

333ページ目:全4648問中3321問~3330問を表示)
西南学院大学 私立 西南学院大学 2012年 第4問
等比数列$\{a_n\}$について,$a_{10}=40$,$\displaystyle a_{15}=\frac{5}{4}$であるとき,以下の問に答えよ.ただし,$a_n$はすべて実数である.

(1)公比は$\displaystyle \frac{[ヌ]}{[ネ]}$である.

(2)$\displaystyle \sum_{n=15}^{19}a_n=\frac{[ノハヒ]}{[フヘ]}$である.

(3)$a_n<10^{-3}$を満たす最小の$n$は,$n=[ホマ]$である.ただし,$\log_{10}2=0.301$として計算せよ.
西南学院大学 私立 西南学院大学 2012年 第5問
原点を$\mathrm{O}$とする空間に四面体$\mathrm{OPQR}$がある.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の位置ベクトルをそれぞれ,$\overrightarrow{p}$,$\overrightarrow{q}$,$\overrightarrow{r}$とするとき,$\triangle \mathrm{PQR}$の重心$\mathrm{G}$の位置ベクトル$\overrightarrow{g}$は,$\displaystyle \overrightarrow{g}=\frac{1}{3}(\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r})$となることを示せ.
龍谷大学 私立 龍谷大学 2012年 第1問
次の問いに答えなさい.

(1)関数$y=\sin^2 x+4 \sin x \cos x+5 \cos^2 x$の最大値と最小値を求めなさい.
(2)$\displaystyle \sum_{k=1}^{99} \log_{10} \frac{k}{k+1}$を求めなさい.
(3)定積分$\displaystyle \int_0^1 (x+1)e^x \, dx$を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
座標空間の原点を$\mathrm{O}$とし,座標空間内に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 1)$,$\mathrm{C}(1,\ 1,\ 1)$をとる.また$0<s<1$,$0<t<1$とし,線分$\mathrm{AB}$を$s:(1-s)$に内分する点を$\mathrm{P}$,線分$\mathrm{OC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)$2$点$\mathrm{P}$,$\mathrm{Q}$の座標を,それぞれ$s,\ t$を用いて表しなさい.
(2)$\displaystyle s=\frac{1}{4}$,$\displaystyle t=\frac{1}{2}$のときの$\angle \mathrm{APQ}$の大きさを$\theta$とする.このとき$\cos \theta$の値を求めなさい.ただし,$0^\circ<\theta<180^\circ$とする.
(3)線分$\mathrm{PQ}$の長さを$l$とする.このとき$s,\ t$が,それぞれ$0<s<1$,$0<t<1$の範囲を動くときの$l$の最小値を求めなさい.
学習院大学 私立 学習院大学 2012年 第1問
正の実数$a,\ b,\ c$に対して,不等式
\[ \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqq \frac{9}{a+b+c} \]
を証明せよ.また,等号が成り立つための条件を求めよ.
学習院大学 私立 学習院大学 2012年 第2問
台形$\mathrm{ABCD}$において,$\mathrm{AD}$と$\mathrm{BC}$は平行,$\angle \mathrm{ABC}$は直角,$\mathrm{AD}=2$,$\mathrm{BC}=3$とする.点$\mathrm{P}$が辺$\mathrm{AB}$上を動くとき,ベクトル
\[ \overrightarrow{\mathrm{PC}}+4 \overrightarrow{\mathrm{PD}} \]
の長さの最小値を求めよ.また,最小値を与える$\mathrm{P}$について$\displaystyle \frac{\mathrm{AP}}{\mathrm{AB}}$を求めよ.
学習院大学 私立 学習院大学 2012年 第2問
関係式
\[ a_1=0,\quad \frac{1}{1-a_{n+1}}-\frac{1}{1-a_n}=2n+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定まる数列$\{a_n\}$に対して,次の問に答えよ.

(1)一般項$a_n$を求めよ.
(2)$k=1,\ 2,\ 3,\ \cdots$に対して
\[ b_k=\sqrt{\frac{k+1}{k}} (1-\sqrt{a_{k+1}}) \]
とおく.このとき,すべての$n$に対して,$\displaystyle \sum_{k=1}^n b_k<\sqrt{2}-1$が成り立つことを示せ.
学習院大学 私立 学習院大学 2012年 第3問
$p$を定数として,関数$f(x)$を
\[ f(x)=e^x-\left( 1+\frac{1}{2}x \right) (1+px) \]
と定める.

(1)$p=0$のとき,$x \geqq 0$ならば$f(x) \geqq 0$であることを示せ.
(2)「$x \geqq 0$ならば$f(x) \geqq 0$」が成り立つような定数$p$の取り得る値の範囲を求めよ.
学習院大学 私立 学習院大学 2012年 第3問
等式
\[ \frac{1}{x^3-x}=\frac{a}{x-1}+\frac{b}{x}+\frac{c}{x+1} \]
が恒等式となるように定数$a,\ b,\ c$の値を定めよ.また,それを利用して
\[ \sum_{n=2}^{100} \frac{1}{n^3-n} \]
を求めよ.
学習院大学 私立 学習院大学 2012年 第4問
$t>0$とし,放物線$\displaystyle C_1:y=-\frac{1}{16}x^2-\frac{8}{9}$上の点$\displaystyle \mathrm{P} \left( t,\ -\frac{1}{16}t^2-\frac{8}{9} \right)$における法線を$L$とする.ただし,点$\mathrm{P}$における法線とは,点$\mathrm{P}$を通り,点$\mathrm{P}$における$C_1$の接線と直交する直線のことである.

(1)$L$が放物線$C_2:y=x^2$に接するとき,$t$の値を求めよ.
(2)$t$が$(1)$での値をとるとき,$C_1,\ C_2,\ L$および$y$軸で囲まれた部分の面積を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。