タグ「分数」の検索結果

325ページ目:全4648問中3241問~3250問を表示)
明治大学 私立 明治大学 2012年 第1問
空欄$[ ]$に当てはまるものを入れよ.

(1)$5$個の数字$0$,$1$,$2$,$3$,$4$を並べて$5$桁の整数を作る.小さい順にこれらの整数を並べたとき,$57$番目の整数は$\fbox{\footnotesize \phantom{a}アイウエオ\phantom{a}}$である.また,偶数である整数は$[カキ]$個あり,$4$の倍数である整数は$[クケ]$個ある.
(2)次の連立方程式
\[ \left\{ \begin{array}{l}
\log_xy+2 \log_y x=3 \\
\log_x(y^2+xy)=2
\end{array} \right. \]
の解は$\displaystyle x=\frac{-[コ]+\sqrt{[サ]}}{[シ]}$,$\displaystyle y=\frac{[ス]-\sqrt{[セ]}}{[ソ]}$である.
(3)自然数$1,\ 2,\ \cdots,\ n$の中から異なる二つの数を選んで積を作る.このような積全ての和を$S_n$とおく.ただし,$S_1=0$とする.$S_n$と$S_{n-1}$の間には漸化式
\[ S_n=S_{n-1}+n \cdot \frac{[タ]}{[チ]} \]
が成り立つ.これを使って,$S_n$を求めると
\[ S_n=\frac{1}{[ツテ]} \cdot n(n+1)([ト]) \]
となる.
明治大学 私立 明治大学 2012年 第2問
空欄$[ ]$に当てはまるものを入れよ.

$\mathrm{AB}=\mathrm{AC}=r$である二等辺三角形$\mathrm{ABC}$がある.$\angle \mathrm{BAC}=\theta$とおく.点$\mathrm{P}$は$\angle \mathrm{PBC}=\angle \mathrm{PCA}=90^\circ$を満たす.次の問に答えよ.
(1)$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.このとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{[ア]}{[イ]} \overrightarrow{b}+\frac{[ウ]}{[エ]} \overrightarrow{c} \]
が成り立つ.
(2)$\triangle \mathrm{ABC}=\triangle \mathrm{BCP}$であるのは$\displaystyle \cos \theta=\frac{[オ]}{[カ]}$のときである.このとき,$\displaystyle \triangle \mathrm{ABC}=\frac{\sqrt{[キ]}}{[ク]} \cdot r^2$である.
(3)$\mathrm{AB}=\mathrm{BP}$であるのは$\displaystyle \cos \theta=\frac{[ケ]-\sqrt{[コサ]}}{[シ]}$のときである.
明治大学 私立 明治大学 2012年 第3問
$xy$平面上に点$\mathrm{P}(1,\ 0)$を中心とする円:$(x-1)^2+y^2=1$がある.この円周上に$4$点$\displaystyle \mathrm{A}(\frac{9}{5},\ \frac{3}{5})$,$\displaystyle \mathrm{B}(\frac{1}{13},\ \frac{5}{13})$,$\mathrm{C}(\alpha,\ \beta)$,$\mathrm{D}(\gamma,\ \delta)$がある.ただし,$\displaystyle \delta<-\frac{4}{5}$とする.$\angle \mathrm{ABC}=90^{\circ}$であり,三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{63}{65}$であるとする.

(1)点$\mathrm{C}$の座標は,$\displaystyle\left( \frac{[ツ]}{[テ]},\ -\displaystyle\frac{[ト]}{[テ]} \right)$である.

(2)$\mathrm{AB}$の長さは$\displaystyle \frac{[ナニ] \sqrt{[ヌネ]}}{[ヌネ]}$であり,$\displaystyle \cos \angle \mathrm{BDC}=\frac{[ノ] \sqrt{[ハヒ]}}{[ハヒ]}$である.

(3)点$\mathrm{D}$の座標は$\displaystyle \left( \frac{[フヘ]}{[ホマ]},\ -\frac{[ミム]}{[メモ]} \right)$であり,$\displaystyle \cos \angle \mathrm{BPD}=-\frac{[ヤユヨ]}{169}$である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第3問
$n$を$3$以上の整数とする.$xyz$空間の平面$z=0$上に,$1$辺の長さが$4$の正$n$角形$P$があり,$P$の外接円の中心を$\mathrm{G}$とおく.半径$1$の球$B$の中心が$P$の辺に沿って$1$周するとき,$B$が通過してできる立体を$K_n$とする.このとき,次の問いに答えよ.

(1)$P$の隣り合う$2$つの頂点$\mathrm{P}_1$,$\mathrm{P}_2$をとる.$\mathrm{G}$から辺$\mathrm{P}_1 \mathrm{P}_2$に下ろした垂線と$\mathrm{P}_1 \mathrm{P}_2$との交点を$\mathrm{Q}$とするとき,$\mathrm{GQ}>1$となることを示せ.
(2)次の各問に答えよ.

(i) $K_n$を平面$z=t (-1 \leqq t \leqq 1)$で切ったときの断面積$S(t)$を$t$と$n$を用いて表せ.
(ii) $K_n$の体積$V(n)$を$n$を用いて表せ.

(3)$\mathrm{G}$を通り,平面$z=0$に垂直な直線を$\ell$とする.$K_n$を$\ell$のまわりに$1$回転させてできる立体の体積$W(n)$を$n$を用いて表せ.
(4)$\displaystyle\lim_{n \to \infty}\frac{V(n)}{W(n)}$を求めよ.
上智大学 私立 上智大学 2012年 第1問
次の空欄に適する数,数式を入れよ.

(1)$f(x)=|2 \sin x-\cos 2x+\displaystyle\frac{1|{2}}$とおく.$\sin x=[ア]$のとき$f(x)$は最大値$\displaystyle\frac{[イ]}{[ウ]}$をとる.また,$\sin x = \displaystyle\frac{[エ]+\sqrt{[オ]}}{[カ]}$のとき$f(x)$は最小値[キ]をとる.
(2)$x,\ y,\ z$は次の条件を満たす実数とする.
\[ 0 \leqq x \leqq y \leqq z \leqq \frac{4}{5}, \quad x+2y+z = 1 \]
このとき,$y$の最小値は$\displaystyle\frac{[ク]}{[ケ]}$,最大値は$\displaystyle\frac{[コ]}{[サ]}$である.
(3)不等式
\[ \log_2 x - 6\log_x 2 \geqq 1 \]
の解は
\[ \frac{[シ]}{[ス]} \leqq x < [セ], \quad x \geqq [ソ] \]
である.
上智大学 私立 上智大学 2012年 第2問
$a,\ b$を実数とし,$C_1,\ C_2$をそれぞれ次の$2$次関数のグラフとする.
\[ C_1: y=x^2, \quad C_2: y=-(x-a)^2+2a+b \]

(1)$C_1$と$C_2$が共有点をもつための条件を$a$と$b$で表すと
\[ a^2+[タ]a+[チ]b \leqq 0 \]
となる.特に$b$のとりうる値の範囲は$b \geqq [ツ]$であり,$b=[ツ]$のとき$C_1$と$C_2$はただ$1$つの共有点$\left( [テ],\ [ト] \right)$をもつ.
(2)$b=6$とし,$C_1$と$C_2$は共有点をもつとすると,
\[ [ナ] \leqq a \leqq [ニ] \]
である.このとき,$C_1$と$C_2$で囲まれた図形を$D$とすると,$D$の面積$S$は
\[ S=\frac{1}{3} \left( [ヌ]a^2+[ネ]a+[ノ] \right)^{\frac{3}{2}} \]
と表される.$a=[ハ]$のとき$S$は最大値$\displaystyle \frac{[ヒ]}{[フ]}$をとる.
(3)$a=[ハ]$,$b=6$とし,$C_1$と$C_2$で囲まれた図形を$D_0$とする.点$\mathrm{P}(x,\ y)$が$D_0$内を動くとき,$x+2y$の最大値は$\displaystyle \frac{[ヘ]}{[ホ]}$,最小値は$\displaystyle \frac{[マ]}{[ミ]}$である.
上智大学 私立 上智大学 2012年 第2問
$a$を実数とする.座標平面において,放物線$C_a$
\[ C_a:y=-2x^2+4ax-2a^2+a+1 \]
および放物線$C$
\[ C:y=x^2-2x \]
を考える.

(1)$C_a$の頂点は常に直線$y=[ク]x+[ケ]$上にある.
(2)$C_a$と$C$が共有点をもつための必要十分条件は,
\[ \frac{[コ]}{[サ]} \leqq a \leqq [シ] \]
である.
(3)$\displaystyle a=\frac{[コ]}{[サ]}$のとき,$C_a$と$C$の共有点は$\mathrm{P}([ス],\ [セ])$である.

(4)$a=[シ]$のとき,$C_a$と$C$の共有点は$\mathrm{Q}([ソ],\ [タ])$である.

(5)$C$と直線$\mathrm{PQ}$で囲まれる図形の面積は$\displaystyle \frac{[チ]}{[ツ]}$である.
(6)$\displaystyle \frac{[コ]}{[サ]}<a<[シ]$の場合,$C_a$と$C$で囲まれる図形の面積は,$\displaystyle a=\frac{[テ]}{[ト]}$のとき最大値$\displaystyle \frac{[ナ]}{[ニ]} \sqrt{[ヌ]}$をとる.
明治大学 私立 明治大学 2012年 第2問
次の空欄$[ア]$から$[オ]$に当てはまるものをそれぞれ入れよ.ただし,$e$は自然対数の底である.必要ならば$\displaystyle \lim_{x \to \infty} \frac{x}{e^x}=0.\ \lim_{x \to \infty} \frac{x^2}{e^x}=0$を用いてもよい.

関数$\displaystyle f(x) = \frac{(x+1)^2}{e^x}$を考える.

(1)$f(x)$は$x=[ア]$において最小値[イ]をとる.
(2)$k$を定数とする.$x$についての方程式$f(x) = k$が二つの実数解をもつとき,$k=[ウ]$である.
(3)曲線$y=f(x)$の変曲点の$x$座標は
$[エ]-\sqrt{[オ]}, \quad [エ]+\sqrt{[オ]}$
である.
上智大学 私立 上智大学 2012年 第1問
$x$の$3$次式$f(x)=ax^3+bx^2+cx+d$は,$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において
\[ f(\cos \theta) = \cos 3\theta - \sqrt{3} \cos 2\theta \]
を常に満たすとする.

(1)$a=[ア],\ b=[イ]\sqrt{[ウ]},\ c=[エ],\ d=\sqrt{[オ]}$である.
(2)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,$\cos 3\theta - \sqrt{3}\cos 2\theta$は
\[ \theta = \frac{[カ]}{[キ]}\pi \text{のとき最小値} \frac{[ク]}{[ケ]}\sqrt{[コ]} \text{をとり,} \]
\[ \theta = \frac{[サ]}{[シ]}\pi \text{のとき最大値} \sqrt{[ス]} \text{をとる.} \]
(3)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,
\[ \cos 3\theta - \sqrt{3}\cos 2\theta \geqq \alpha\cos \theta + \sqrt{3} \]
が常に成り立つような$\alpha$の最大値は$\displaystyle\frac{[セ]}{[ソ]}$である.
(4)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,
\[ \cos 3\theta - \sqrt{3}\cos 2\theta \leqq \beta\cos \theta + \sqrt{3} \]
が常に成り立つような$\beta$の最小値は$[タ]+[チ]\sqrt{[ツ]}$である.
上智大学 私立 上智大学 2012年 第2問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,
\[ \mathrm{PA} = \mathrm{PB} = \mathrm{PC} = \mathrm{PD} = \sqrt{5} \]
である四角錐$\mathrm{PABCD}$を考える.
(図は省略)

(1)四角錐$\mathrm{PABCD}$のすべての面に接する球の中心を$\mathrm{O}$とし,$\mathrm{P}$から底面$\mathrm{ABCD}$に垂線$\mathrm{PH}$を下ろすとき
\[ \mathrm{PH}=[テ],\quad \mathrm{OH}=\frac{[ト]}{[ナ]} \]
である.
(2)辺$\mathrm{PB}$の中点を$\mathrm{Q}$,辺$\mathrm{PD}$の中点を$\mathrm{R}$とする.$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{C}$を含む平面と辺$\mathrm{PA}$との交点を$\mathrm{S}$とする.このとき
\[ \mathrm{SP}=\frac{[ニ]}{[ヌ]} \sqrt{[ネ]} \]
である.$\mathrm{S}$から線分$\mathrm{AC}$に垂線$\mathrm{ST}$を下ろすとき
\[ \mathrm{ST}=\frac{[ノ]}{[ハ]},\quad \mathrm{CT}=\frac{[ヒ]}{[フ]} \]
である.さらに,四角形$\mathrm{CRSQ}$の面積は
\[ \frac{[ヘ]}{[ホ]} \sqrt{[マ]} \]
である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。