タグ「分数」の検索結果

322ページ目:全4648問中3211問~3220問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
半径$1$の球が平面の上に接している.平面との接点を$\mathrm{O}$とし,$\mathrm{O}$を球の南極点とみなしたときの球の北極点を$\mathrm{N}$とする.平面上に点$\mathrm{A}$を$\mathrm{OA}=3$となるようにとる.また点$\mathrm{B}$を$\mathrm{OB}=4$であり,直線$\mathrm{OA}$と直線$\mathrm{OB}$が直交するようにとる.\\
\quad 点$\mathrm{N}$と平面上の点$\mathrm{P}$を結ぶ直線が球面と交わる$2$点の内,$\mathrm{N}$と異なる点を$\mathrm{P}^{\prime}$とする.このとき$\mathrm{N}$と$\mathrm{A}^{\prime}$,$\mathrm{B}^{\prime}$の距離はそれぞれ
\[ \mathrm{NA}^{\prime}= \frac{[$1$][$2$]}{\sqrt{[$3$][$4$]}},\quad \text{NB}^{\prime}=\frac{[$5$][$6$]}{\sqrt{[$7$][$8$]}} \]
である.点$\mathrm{P}$が直線$\mathrm{AB}$上を動くとき,$\mathrm{P}^{\prime}$は直径
\[ \frac{[$9$][$10$]}{\sqrt{[$11$][$12$]}} \]
の円を動く.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:4$に内分する点を$\mathrm{D}$,辺$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{E}$とする.また,$2$つの線分$\mathrm{AE}$と$\mathrm{BD}$の交点を$\mathrm{P}$として,直線$\mathrm{OP}$が辺$\mathrm{AB}$と交わる点を$\mathrm{F}$とする.このとき,
\[ \overrightarrow{\mathrm{OP}} = \frac{[(15)][(16)]}{[(17)][(18)]} \overrightarrow{\mathrm{OA}} + \frac{[(19)][(20)]}{[(21)][(22)]} \overrightarrow{\mathrm{OB}} \]
と表される.また三角形$\mathrm{OAF}$の面積を$S_1$とし,三角形$\mathrm{OFB}$の面積を$S_2$とするとき
\[ \frac{S_2}{S_1} = \frac{[(23)][(24)]}{[(25)][(26)]} \]
である.さらに三角形$\mathrm{POA}$の面積を$S_3$とし,三角形$\mathrm{PFB}$の面積を$S_4$とするとき
\[ \frac{S_4}{S_3} = \frac{[(27)][(28)]}{[(29)][(30)]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
袋の中に文字$\mathrm{K}$,$\mathrm{E}$,$\mathrm{I}$が書かれたカードがそれぞれ$1$枚ずつと,文字$\mathrm{O}$が書かれたカードが何枚か入っている.いま,袋の中から$1$枚ずつカードを取り出し,$\mathrm{K}$,$\mathrm{E}$,$\mathrm{I}$,$\mathrm{O}$のすべての文字のカードがそれぞれ$1$枚以上出たところで終了する.ただし,一度取り出したカードは袋の中には戻さないものとする.

(1)袋の中に文字$\mathrm{O}$が書かれたカードが$7$枚あり,合計$10$枚のカードが入っている場合を考える.$3$枚目に文字$\mathrm{O}$のカードを取り出す確率は$[ク]$であり,$1$枚目または$3$枚目に文字$\mathrm{O}$のカードを取り出す確率は$[ケ]$である.また,最後に取り出したカードに書かれている文字が$\mathrm{K}$である確率は$[コ]$である.
(2)袋の中に文字$\mathrm{O}$が書かれたカードが$n$枚($n \geq 2$)あり,合計$n+3$枚のカードが入っている場合を考える.$k$枚目で終了する確率を$p_k$とすると,$p_4=[サ]$であり,$5 \leq k \leq n+3$に対しては$p_k=[シ]$である.いま,終了した時点で袋の中に残っているカードの枚数の期待値を$E_n$とすると,$\displaystyle \lim_{n \to \infty} \frac{E_n}{n}= [ス]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
関数$f(x)=x(x-1)(x-3)(x-4)$は$0 \leq x \leq 4$の範囲において,
$x=[$35$]$で最大値[$36$]をとり,$x=\displaystyle\frac{[$37$]\text{±}\sqrt{[$38$][$39$]}}{[$40$]}$
で最小値$-\displaystyle\frac{[$41$]}{[$42$]}$をとる.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
曲線上の点$\mathrm{P}$を通り,$\mathrm{P}$におけるこの曲線の接線$\ell$と直交する直線$m$をこの曲線の法線とよぶ.$a,\ b>0$とし,$2$次曲線$x^2 = 4a(y+b)$の法線が$(0,\ 2a)$を通るとき,接点$\mathrm{P}(p,\ q)$は
\[ p^2 = [(41)]ab, \quad q= [(42)] \]
をみたす.したがって条件をみたす接線と法線の組$(\ell,\ m)$は$2$組ある.この$4$本の直線で囲まれる$4$角形$S$の面積は$[(43)][(44)](a+b)\sqrt{ab}$である.また$2$本の法線と$2$次曲線で囲まれる部分で$S$に含まれる部分の面積は
\[ \left( \frac{[(45)][(46)]a+[(47)][(48)]b}{[49]} \right) \sqrt{ab} \]
である.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えよ.

(1)$0 \leqq x \leqq \pi$において
\[ y= \sin x + 2 \cos \left( x - \frac{\pi}{6} \right) \]
の最大値は$\sqrt{[ア]}$であり,最小値は$-\sqrt{[イ]}$である.
(2)$xy = 4x -y+28$を満たす正の整数$x,\ y$の組$(x,\ y)$は全部で[ウ]組ある.
(3)放物線$y=\displaystyle\frac{1}{2}x^2$は,$x$軸方向に[エ],$y$軸方向に$\displaystyle\frac{[オ]}{[カ]}$だけ平行移動すると,直線$y=-x$と直線$y=3x$の両方に接する.
(4)実数$x,\ y$が$x^2+xy+2y^2=1$を満たすとき,$y^2$がとり得る値の範囲は
\[ [キ] \leqq y^2 \leqq \frac{[ク]}{[ケ]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
$2$次方程式$x^2+ax+b=0$の係数$a,\ b$を次のようにして決める.\\
$1$から$6$までの目のある正$6$面体のサイコロを$2$回投げる.$1$回目に出た目の数を$a$,$2$回目に出た目の数を$b$とする.このとき$2$次方程式の解が実数である確率は
\[ \frac{[(1)][(2)]}{[(3)][(4)]} \]
である.\\
\quad 次に$m$を自然数として,$1$から$4m$まで書かれた$4m$枚のカードから無作為に$1$枚のカードを選び,書かれた数の正の平方根を$a$とする.選んだカードをもとに戻し,再び無作為に$1$枚のカードを選び,書かれた数を$b$とする.このとき$x^2+ax+b=0$の解が実数である確率は
\[ \frac{[(5)]m-[(6)]}{[(7)][(8)]m} \]
である.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
ある企業が毎年$x$リットルの液体製品を製造している.生産するための総費用を$c$,設備の規模を$k$とする.製品1リットルの価格を$p$とし
\[ c= 0.01x^3+0.8x^2+(4-k)x+5k^2 \]
が成り立つとする.このとき利潤は$px-c$である.

(1)$p=15,\ k=1$のとき,$x$が
\[ \frac{[(9)][(10)]}{[(11)][(12)]} \]
のとき利潤は最大となる.
(2)生産量$x$を変えずに,設備の規模$k$を変えて総費用$c$を最小化することを考えると
\[ k=\frac{[(13)][(14)]}{[(15)][(16)]} x \]
である.
(3)$p=19$とし,$k$と$x$は(2)で求めた関係式を満たすとする.このとき$x$が
\[ [(17)][(18)][(19)]+[(20)][(21)]\sqrt{[(22)]} \]
のとき利潤は最大となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
低所得者層が$20 \%$,中所得者層が$70 \%$,高所得者層が$10 \%$の社会がある.低所得者層の平均所得が$30$単位,中所得者層の平均所得が$50$単位,高所得者層の平均所得が$70$単位とする.

$xy$平面を考え,$x$軸を全所得者を所得の低い順に数えたときの累積人数の全所得者数に対する割合,$y$軸を対応する累積所得の全所得に対する割合にとる.例えば$x$座標が$0.2$のとき,$y$座標は低所得者全体の所得の全所得に対する割合である.これに対応する点は

\quad $\displaystyle \mathrm{A} \left( 0.2,\ \frac{0.2 \times 30}{0.2 \times 30 + 0.7 \times 50 + 0.1 \times 70} \right)$

となる.同様に$x$座標が$0.9,\ 1$の点$\mathrm{B}$,$\mathrm{C}$はそれぞれ

\quad $\displaystyle \mathrm{B} \left( 0.9,\ \frac{0.2 \times [(23)][(24)] + 0.[(25)][(26)] \times [(27)][(28)]}{0.2 \times 30 + 0.7 \times 50 + 0.1 \times 70} \right)$

\quad $\mathrm{C} \left(1,\ [(29)][(30)] \right)$

となる.
$x$軸上の$4$点を$\mathrm{O}(0,\ 0)$,$\mathrm{D}(0.2,\ 0)$,$\mathrm{E}(0.9,\ 0)$,$\mathrm{F}(1,\ 0)$としたとき,三角$\mathrm{OAD}$,台形$\mathrm{ADEB}$,台形$\mathrm{BEFC}$の面積の総和を平等度指数とよぶ.平等度指数は

$\displaystyle \frac{[(31)][(32)]}{[(33)][(34)]}$

ある.ここで所得に対して,一定の割合で課せられる税,すなわち所得税を導入をした.低所得者には無税,中所得者には$10$単位,高所得者には$20$単位の所得税を課した.税を払った残りを改めて所得としたときの平等度指数は

$\displaystyle \frac{[(35)][(36)][(37)]}{[(38)][(39)][(40)]}$

である.
東京理科大学 私立 東京理科大学 2012年 第4問
関数$f(x)$を
\[ f(x) = \frac{\sqrt{2}}{6}x^3 + \frac{9}{2} \]
と定める.さらに,$\mathrm{O}$を原点とする座標平面上の曲線$C:y=f(x)$を考える.

(1)曲線$C$上の点$(2,\ f(2))$における接線を$\ell_1$とおく.直線$\ell_1$の方程式を求めよ.
(2)$\ell_1$を(1)で定めた直線とする.曲線$C$と直線$\ell_1$は点$(2,\ f(2))$以外にもう$1$つ共有点をもつ.その共有点の$x$座標を求めよ.
(3)$m$を実数とし,原点$\mathrm{O}$を通る直線$\ell_2:y=mx$を考える.曲線$C$と直線$\ell_2$が共有点をちょうど$2$個もつときの$m$の値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。