タグ「分数」の検索結果

307ページ目:全4648問中3061問~3070問を表示)
群馬大学 国立 群馬大学 2012年 第4問
$a$は0でない定数とする.座標平面上の3点A$(a+2,\ a+1)$,B$(9,\ 0)$,C$(2,\ 1)$について,線分ABと線分ACが垂直のとき,以下の問いに答えよ.

(1)$a$の値を求めよ.
(2)自然数$n$について,線分ABを$n:n+4$に内分する点をP$_n$,線分BCを$3:n$に内分する点をQ$_n$,線分CAを$n:1$に内分する点をR$_n$とする.$\triangle$P$_n$Q$_n$R$_n$の面積を$S_n$とするとき,$S_n$を$n$を用いて表せ.
(3)$\displaystyle T_m=\sum_{n=1}^m \frac{S_n}{n}$とするとき,$\displaystyle \lim_{m \to \infty}T_m$を求めよ.
香川大学 国立 香川大学 2012年 第3問
曲線$C:y=x \sin x$について,次の問に答えよ.

(1)$C$の接線のうち,原点を通る接線の方程式をすべて求めよ.
(2)直線$\displaystyle y=\frac{1}{2}x$と$C$との交点のうち,第1象限にあるものを$x$座標の小さい方から順にP$_1$,P$_2$,P$_3$,$\cdots$とする.線分P$_{2n-1}$P$_{2n}$と$C$で囲まれた図形の面積$S_n$を求めよ.
(3)点Q$_n \displaystyle \left( \frac{\pi}{2}+2(n-1)\pi,\ \frac{\pi}{2}+2(n-1)\pi \right)$に対して,$\triangle$P$_{2n-1}$P$_{2n}$Q$_n$の面積を$T_n$とする.このとき,$n$によらずに$\displaystyle \frac{S_n}{T_n}$が一定であることを示せ.
和歌山大学 国立 和歌山大学 2012年 第1問
次の問いに答えよ.

(1)$\log_5 11$と$\log_6 15$と$\displaystyle \frac{3}{2}$の大小を比較し,小さい方から順に並べよ.
(2)$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.$\displaystyle \tan \frac{\alpha}{4}=\frac{1}{5}$であるとき,$\alpha$と$\displaystyle \frac{\pi}{4}$の大小を比較せよ.
和歌山大学 国立 和歌山大学 2012年 第2問
平面上のベクトル$\overrightarrow{a},\ \overrightarrow{b}$が$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{5}$と$|2\overrightarrow{a}-\overrightarrow{b}|=2$を満たしている.このとき,次の問いに答えよ.

(1)$|\overrightarrow{a}|=k$とするとき,$|\overrightarrow{b}|$と$\overrightarrow{a} \cdot \overrightarrow{b}$をそれぞれ$k$を用いて表せ.
(2)$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が$\displaystyle \frac{\pi}{4}$であるとき,$|\overrightarrow{a}|$と$|\overrightarrow{b}|$の値をそれぞれ求めよ.
和歌山大学 国立 和歌山大学 2012年 第3問
座標平面上に$2$点$\mathrm{P}_0(0,\ 0)$,$\mathrm{P}_1(1,\ 0)$がある.$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_{n+1}$を以下のように順に定める.

線分$\mathrm{P}_{n-1} \mathrm{P}_n$を点$\mathrm{P}_n$を中心として時計まわりに$60^\circ$回転させて得られる線分の上に,$\mathrm{P}_n \mathrm{P}_{n+1}=\displaystyle \frac{1}{2} \mathrm{P}_{n-1} \mathrm{P}_n$となるように点$\mathrm{P}_{n+1}$を定める.

このとき,次の問いに答えよ.

(1)$\mathrm{P}_3$の座標を求めよ.
(2)自然数$k$に対して,$\mathrm{P}_{3k}$,$\mathrm{P}_{3k+1}$,$\mathrm{P}_{3k+2}$の座標をそれぞれ求めよ.
和歌山大学 国立 和歌山大学 2012年 第1問
次の問いに答えよ.

(1)$\log_5 11$と$\log_6 15$と$\displaystyle \frac{3}{2}$の大小を比較し,小さい方から順に並べよ.
(2)$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.$\displaystyle \tan \frac{\alpha}{4}=\frac{1}{5}$であるとき,$\alpha$と$\displaystyle \frac{\pi}{4}$の大小を比較せよ.
和歌山大学 国立 和歌山大学 2012年 第2問
平面上のベクトル$\overrightarrow{a},\ \overrightarrow{b}$が$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{5}$と$|2\overrightarrow{a}-\overrightarrow{b}|=2$を満たしている.このとき,次の問いに答えよ.

(1)$|\overrightarrow{a}|=k$とするとき,$|\overrightarrow{b}|$と$\overrightarrow{a} \cdot \overrightarrow{b}$をそれぞれ$k$を用いて表せ.
(2)$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が$\displaystyle \frac{\pi}{4}$であるとき,$|\overrightarrow{a}|$と$|\overrightarrow{b}|$の値をそれぞれ求めよ.
和歌山大学 国立 和歌山大学 2012年 第3問
座標平面上に$2$点$\mathrm{P}_0(0,\ 0)$,$\mathrm{P}_1(1,\ 0)$がある.$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_{n+1}$を以下のように順に定める.

線分$\mathrm{P}_{n-1} \mathrm{P}_n$を点$\mathrm{P}_n$を中心として時計まわりに$60^\circ$回転させて得られる線分の上に,$\mathrm{P}_n \mathrm{P}_{n+1}=\displaystyle \frac{1}{2} \mathrm{P}_{n-1} \mathrm{P}_n$となるように点$\mathrm{P}_{n+1}$を定める.

このとき,次の問いに答えよ.

(1)$\mathrm{P}_3$の座標を求めよ.
(2)自然数$k$に対して,$\mathrm{P}_{3k}$,$\mathrm{P}_{3k+1}$,$\mathrm{P}_{3k+2}$の座標をそれぞれ求めよ.
三重大学 国立 三重大学 2012年 第4問
媒介変数$\theta$を用いて$\displaystyle x=2\cos \theta,\ y=3\sin \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$と表される曲線がある.

(1)この曲線について$\theta$を消去して,$x,\ y$の方程式を求め,その概形をかけ.
(2)曲線上の点P$(2\cos \theta,\ 3\sin \theta)$での接線の方程式を求めよ.
(3)(2)で求めた接線と$x$軸,$y$軸とで作られる三角形の面積$S$を$\theta$の関数として表せ.
三重大学 国立 三重大学 2012年 第5問
$h$を$0<h<1$を満たす実数とし,
\[ f(x)=\bigg| x^2-\frac{2}{h}x \bigg| +2x+1,\quad g(x)=- \bigg| x^2-\frac{2}{h}x \bigg| +2x+1 \]
とする.

(1)2つの曲線$y=f(x)$と$y=g(x)$で囲まれる図形の面積$S(h)$を求めよ.
(2)(1)で定めた図形を含む,各辺が$x$軸または$y$軸に平行であるような長方形のうち,面積が最小となるものの面積を$T(h)$とする.$h$が0に限りなく近づくとき,$\displaystyle \frac{T(h)}{S(h)}$の極限値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。