タグ「分数」の検索結果

301ページ目:全4648問中3001問~3010問を表示)
大分大学 国立 大分大学 2012年 第4問
$\displaystyle I_1=\int_0^3 \sqrt{x^2+9} \, dx, I_2=\int_0^3 \frac{dx}{\sqrt{x^2+9}}$とする.

(1)次の等式がすべての実数$x$について成り立つように,定数$a,\ b$の値を定めなさい.
\[ \frac{x^2}{\sqrt{x^2+9}}=a\sqrt{x^2+9}+\frac{b}{\sqrt{x^2+9}} \]
(2)$I_1$において部分積分することにより,$I_1$を$I_2$で表しなさい.
(3)$\log (x+\sqrt{x^2+9})$の導関数を利用して,$I_2$を求めなさい.
(4)曲線$x^2-y^2=-9$と直線$y=3\sqrt{2}$で囲まれた部分の面積$S$を求めなさい.
佐賀大学 国立 佐賀大学 2012年 第4問
$2$次関数$f(x),\ g(x)$は,それぞれ
\begin{eqnarray}
& & f(x)=\frac{3x^2}{16}\int_0^1 f(t) \, dt -\frac{3x}{7}\int_{-1}^0 f(t) \, dt+7, \nonumber \\
& & (x-1)g(x) = \int_0^x g(t) \, dt -\frac{2x^3}{3} + 2x^2-2x+1 \nonumber
\end{eqnarray}
を満たすとする.次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$g(x)$を求めよ.
(3)放物線$y=f(x)$の点$(4,\ f(4))$における接線を$\ell$とする.直線$\ell$と放物線$y=g(x)$とで囲まれた部分の面積を求めよ.
岐阜大学 国立 岐阜大学 2012年 第1問
四角形$\mathrm{ABCD}$において$\mathrm{AB}=\mathrm{CD}=1,\ \mathrm{BC}=\mathrm{DA}=3$であり,対角線$\mathrm{AC}$,$\mathrm{BD}$の長さをそれぞれ$x,\ y$とする.以下の問に答えよ.

(1)四角形$\mathrm{ABCD}$の面積$S$を$x$を用いて表せ.また,$S$の最大値$S_0$を求めよ.
(2)面積が$\displaystyle \frac{1}{3}S_0$である四角形$\mathrm{ABCD}$に対して$x^2,\ y^2$の値を求めよ.ただし,$x \leqq y$とし,$S_0$は(1)で求めたものとする.
(3)$\cos \angle \mathrm{ACB}$を$x$で表せ.また,$\angle \mathrm{ACB}$が最大となる$x$の値を求めよ.
岐阜大学 国立 岐阜大学 2012年 第1問
四角形$\mathrm{ABCD}$において$\mathrm{AB}=\mathrm{CD}=1,\ \mathrm{BC}=\mathrm{DA}=3$であり,対角線$\mathrm{AC}$,$\mathrm{BD}$の長さをそれぞれ$x,\ y$とする.以下の問に答えよ.

(1)四角形$\mathrm{ABCD}$の面積$S$を$x$を用いて表せ.また,$S$の最大値$S_0$を求めよ.
(2)面積が$\displaystyle \frac{1}{3}S_0$である四角形$\mathrm{ABCD}$に対して$x^2,\ y^2$の値を求めよ.ただし,$x \leqq y$とし,$S_0$は(1)で求めたものとする.
(3)$\cos \angle \mathrm{ACB}$を$x$で表せ.また,$\angle \mathrm{ACB}$が最大となる$x$の値を求めよ.
佐賀大学 国立 佐賀大学 2012年 第5問
$\triangle \mathrm{ABC}$において,$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\angle \mathrm{AOB}=\theta$とおく.ただし,$a \geqq b$および$0^\circ < \theta < 90^\circ$とする.点$\mathrm{B}$から辺$\mathrm{OA}$に下ろした垂線の足を$\mathrm{A}_1$とする.また点$\mathrm{A}_1$を通って辺$\mathrm{AB}$に平行な直線と,辺$\mathrm{OB}$との交点を$\mathrm{B}_1$とする.次に点$\mathrm{B}_1$から辺$\mathrm{OA}_1$に下ろした垂線の足を$\mathrm{A}_2$とし,点$\mathrm{A}_2$を通って辺$\mathrm{A}_1 \mathrm{B}_1$に平行な直線と,辺$\mathrm{OB}_1$との交点を$\mathrm{B}_2$とする.以下,この操作を続け,三角形の列
\[ \triangle \mathrm{OA}_1 \mathrm{B}_1,\ \triangle \mathrm{OA}_2 \mathrm{B}_2,\ \cdots,\ \triangle \mathrm{OA}_n \mathrm{B}_n \]
をとる.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{OA}_n \mathrm{B}_n$は,$\triangle \mathrm{OAB}$に相似であることを示せ.
(2)$\displaystyle \frac{\mathrm{A}_n \mathrm{B}_n}{\mathrm{A}_{n-1} \mathrm{B}_{n-1}}$を$a,\ b,\ \theta$の式で表せ.
(3)$\triangle \mathrm{OA}_k \mathrm{B}_k$の面積を$S_k$とする.$a=2,\ b=1,\ \theta=30^\circ$のとき,$S_1+S_2+\cdots + S_n$を$n$の式で表せ.
富山大学 国立 富山大学 2012年 第1問
次の問いに答えよ.

(1)すべての実数$x$に対して,次の不等式が成り立つことを示せ.
\[ e^{-x^2} \leqq \frac{1}{1+x^2} \]
(2)次の不等式が成り立つことを示せ.
\[ \frac{e-1}{e} < \int_0^1 e^{-x^2} \, dx < \frac{\pi}{4} \]
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
富山大学 国立 富山大学 2012年 第1問
次の問いに答えよ.

(1)すべての実数$x$に対して,次の不等式が成り立つことを示せ.
\[ e^{-x^2} \leqq \frac{1}{1+x^2} \]
(2)次の不等式が成り立つことを示せ.
\[ \frac{e-1}{e} < \int_0^1 e^{-x^2} \, dx < \frac{\pi}{4} \]
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
富山大学 国立 富山大学 2012年 第1問
次の問いに答えよ.

(1)すべての実数$x$に対して,次の不等式が成り立つことを示せ.
\[ e^{-x^2} \leqq \frac{1}{1+x^2} \]
(2)次の不等式が成り立つことを示せ.
\[ \frac{e-1}{e} < \int_0^1 e^{-x^2} \, dx < \frac{\pi}{4} \]
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。