タグ「分数」の検索結果

296ページ目:全4648問中2951問~2960問を表示)
信州大学 国立 信州大学 2012年 第4問
実数$a$は$a>-1$とする.関数$f(x)=3x^3-7x^2+5x-1$に対し,
\[ -1<c<a,\ \frac{f(a)-f(-1)}{a+1}=f^{\, \prime}(c) \]
となる$c$がちょうど2つ存在するような$a$の値の範囲を求めよ.
筑波大学 国立 筑波大学 2012年 第2問
曲線$\displaystyle C:y=\frac{1}{x+2} \ (x>-2)$を考える.曲線$C$上の点P$_1 \displaystyle (0,\ \frac{1}{2})$における接線を$\ell_1$とし,$\ell_1$と$x$軸との交点をQ$_1$,点Q$_1$を通り$x$軸と垂直な直線と曲線$C$との交点をP$_2$とおく.以下同様に,自然数$n \ (n \geqq 2)$に対して,点P$_n$における接線を$\ell_n$とし,$\ell_n$と$x$軸との交点をQ$_n$,点Q$_n$を通り$x$軸と垂直な直線と曲線$C$との交点をP$_{n+1}$とおく.

(1)$\ell_1$の方程式を求めよ.
(2)P$_n$の$x$座標を$x_n \ (n \geqq 1)$とする.$x_{n+1}$を$x_n$を用いて表し,$x_n$を$n$を用いて表せ.
(3)$\ell_n$,$x$軸,$y$軸で囲まれる三角形の面積$S_n$を求め,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
筑波大学 国立 筑波大学 2012年 第3問
曲線$C:y=\log x \ (x>0)$を考える.自然数$n$に対して,曲線$C$上に点P$(e^n,\ n)$,Q$(e^{2n},\ 2n)$をとり,$x$軸上に点A$(e^n,\ 0)$,B$(e^{2n},\ 0)$をとる.四角形APQBを$x$軸のまわりに1回転させてできる立体の体積を$V(n)$とする.また,線分PQと曲線$C$で囲まれる部分を$x$軸のまわりに1回転させてできる立体の体積を$S(n)$とする.

(1)$V(n)$を$n$の式で表せ.
(2)$\displaystyle \lim_{n \to \infty} \frac{S(n)}{V(n)}$を求めよ.
信州大学 国立 信州大学 2012年 第6問
次の問いに答えよ.

(1)$\displaystyle 0<x<\frac{\pi}{2}$に対し,
\[ x < \tan x\]
となることを示せ.
(2)$x>0$に対し,
\[ \log \left( x+\sqrt{1+x^2} \right) > \sin x \]
となることを示せ.ただし,対数は自然対数である.
防衛医科大学校 国立 防衛医科大学校 2012年 第1問
以下の問に答えよ.

(1)以下の条件 (ア),(イ) を満たす正の整数は,小さい順に並べると,等差数列になる.この数列の初項と公差を求めよ.

\mon[(ア)] $13$で割ると余りが$2$となる.
\mon[(イ)] $11$で割ると商が奇数,余りが$3$となる.

(2)正六角形$\mathrm{ABCDEF}$の辺$\mathrm{CD}$の中点を$\mathrm{M}$,$\mathrm{CE}$と$\mathrm{AM}$の交点を$\mathrm{N}$とする.このとき,$\triangle \mathrm{NEA}$の面積は$\triangle \mathrm{NCM}$の面積の何倍となるか.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n}\sqrt[n]{\frac{(4n)!}{(3n)!}}$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2012年 第2問
座標平面上の点B$(0,\ 1)$を中心とする半径1の円を$C_0$,$a > 0$とし,点A$(a,\ 0)$を通り$C_0$に接する2直線のうち$x$軸でない方を$\ell$とする.また,$C_0$,$x$軸,$\ell$によって囲まれる領域(境界も含む)の内部にあって,$C_0$,$x$軸,$\ell$に接する円を$C_1$,$C_1$の半径を$r$とする.さらに,$C_0$,$C_1$,$x$軸によって囲まれる領域(境界を含む)の内部にあって,$C_0$,$C_1$,$x$軸に接する円を$C_2$,$C_2$の半径を$s$とする.このとき,以下の問に答えよ.

(1)次の問いに答えよ.

\mon[(i)] $r$を$a$で表せ.
\mon[(ii)] $a =\sqrt{3}$のとき,$r$はいくらか.

(2)次の問いに答えよ.

\mon[(i)] $s$を$a$で表せ.
\mon[(ii)] $\displaystyle a=\frac{3}{4}$のとき,$s$はいくらか.

(3)極限値$\displaystyle \lim_{a \to 0}\frac{r}{a^2},\ \lim_{a \to 0}\frac{s}{r}$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2012年 第3問
媒介変数$t \ (0 < t \leqq \pi)$を用いて
\[ \left\{
\begin{array}{l}
x=\sin t \\
\displaystyle y=\frac{\sqrt{3}}{2} \sin 2t
\end{array}
\right. \]
と表される$xy$平面上の曲線を$C_1$,
\[ \left\{
\begin{array}{l}
\displaystyle x=\cos \theta \sin t-\frac{\sqrt{3}}{2} \sin \theta \sin 2t \\ \\
\displaystyle y=\sin \theta \sin t+\frac{\sqrt{3}}{2} \cos \theta \sin 2t
\end{array}
\right. \]
と表される曲線を$C_2$とする.ここで,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.このとき,以下の問に答えよ.

(1)$xy$平面上に$C_1$の概形を描け.
(2)直線$y=-\sqrt{3}x+k$が,$C_1$と少なくとも1点を共有するための実数$k$の条件を求めよ.
(3)直線$y=(\tan \theta)x+l$が,$C_2$と少なくとも1点を共有するための実数$l$の条件を求めよ.
(4)$C_1$が囲む領域の面積を求めよ.
琉球大学 国立 琉球大学 2012年 第1問
次の問に答えよ.

(1)次の数列の一般項を求めよ.
\[ 1,\ 5,\ 11,\ 19,\ 29,\ 41,\ \cdots \]
(2)$|\overrightarrow{a}|=3,\ |\overrightarrow{b}|=2$で,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が${60}^\circ$であるとき,$|\overrightarrow{a}-3\overrightarrow{b}|$を求めよ.
(3)次の数を小さい順に並べよ.
\[ \log_3 5,\ \frac{1}{2}+\log_9 8,\ \log_9 26 \]
(4)次の定積分を求めよ.
\[ \int_0^3 |x^2-x-2| \, dx \]
信州大学 国立 信州大学 2012年 第2問
関数$\displaystyle f(x)=\frac{1}{\sqrt{3}}(1+\sin x)\cos x \ (0 \leqq x \leqq \pi)$を考える.

(1)$f(x)$の増減と極値,および曲線$y=f(x)$の凹凸を調べ,その概形をかけ.
(2)曲線$y=f(x)$と,$x$軸および$2$直線$x=0,\ x=\pi$で囲まれた図形の面積$S$を求めよ.
信州大学 国立 信州大学 2012年 第3問
実数$a$に対して,関数$\displaystyle f_a(x)=-3x^2+\left(\frac{5}{4}-x \right)\int_0^a f_a(t) \, dt$を満たすとする.

(1)$\displaystyle k=\int_0^a f_a(t) \, dt$とおく.このとき,$k$を$a$の分数式で表せ.
(2)どのような実数$a$に対しても,$2$次方程式$f_a(x)=4x-20$が異なる$2$つの実数解をもつことを示せ.
(3)(2)の方程式の解がともに正であるような$a$の値の範囲を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。