タグ「分数」の検索結果

291ページ目:全4648問中2901問~2910問を表示)
東北大学 国立 東北大学 2012年 第1問
$a$を正の実数とし,$\displaystyle a \neq \frac{1}{2}$とする.曲線$C:y=x^2$上の$2$点$\mathrm{P} \left( \frac{1}{2},\ \frac{1}{4} \right)$と$\mathrm{Q}(a,\ a^2)$をとる.点$\mathrm{P}$を通り$\mathrm{P}$における$C$の接線と直交する直線を$\ell$とし,点$\mathrm{Q}$を通り$\mathrm{Q}$における$C$の接線と直交する直線を$m$とする.$\ell$と$m$の交点が$C$上にあるとき,以下の問いに答えよ.

(1)$a$の値を求めよ.
(2)$2$直線$\ell,\ m$と曲線$C$で囲まれた図形のうちで$y$軸の右側の部分の面積を求めよ.
東北大学 国立 東北大学 2012年 第2問
関数$f(x)$を
\[ f(x) = \left| \,2\, \cos^2 x -2\sqrt{3} \, \sin x \, \cos x - \sin x + \sqrt{3}\, \cos x - \frac{5}{4} \, \right| \]
と定める.以下の問いに答えよ.

(1)$t=-\sin x + \sqrt{3} \cos x$とおく.$f(x)$を$t$の関数として表せ.
(2)$x$が$0 \leqq x \leqq 90^\circ$の範囲を動くとき,$t$のとりうる値の範囲を求めよ.
(3)$x$が$0 \leqq x \leqq 90^\circ$の範囲を動くとき,$f(x)$のとりうる値の範囲を求めよ.また,$f(x)$が最大値をとる$x$は,$60^\circ < x< 75^\circ$を満たすことを示せ.
大阪大学 国立 大阪大学 2012年 第5問
1個のさいころを3回続けて投げるとき,1回目に出る目を$\ell$,2回目に出る目を$m$,3回目に出る目を$n$で表すことにする.こ
のとき,以下の同いに答えよ.

(1)極限値
\[ \lim_{x \to -1} \frac{l x^2+mx+n}{x+1} \]
が存在する確率を求めよ.
(2)関数
\[ f(x) = \frac{l x^2+mx+n}{x+1} \]
が,$x > -1$の範囲で極値をとる確率を求めよ.
大阪大学 国立 大阪大学 2012年 第3問
$xyz$空間に3点O$(0,\ 0,\ 0)$,A$(1,\ 0,\ 1)$,B$(0,\ \sqrt{3},\ 1)$がある.平面$z=0$に含まれ,中心がO,半径が1の円を$W$とする.点Pが線分OA上を,点Qが円$W$の周および内部を動くとき,$\overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}$をみたす点R全体がつくる立体を$V_A$とおく.同様に点Pが線分OB上を,点Qが円$W$の周および内部を動くとき,$\overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}$をみたす点R全体がつくる立体を$V_B$とおく.さらに$V_A$と$V_B$の重なり合う部分を$V$とする.このとき,以下の問いに答えよ.

(1)平面$\displaystyle z=\cos \theta \ (0 \leqq \theta \leqq \frac{\pi}{2})$による立体$V$の切り口の面積を$\theta$を用いて表せ.
(2)立体$V$の体積を求めよ.
九州大学 国立 九州大学 2012年 第1問
原点を$\mathrm{O}$とする座標空間に,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 2)$,$\mathrm{C}(-2,\ 1,\ 3)$がある.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$は$\displaystyle\frac{\pi}{2}$より大きいことを示せ.
(2)点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線と直線$\mathrm{BC}$との交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めよ.
(3)$\triangle \mathrm{OAH}$の面積を求めよ.
北海道大学 国立 北海道大学 2012年 第2問
$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$で定義された関数
\[ f(\theta) = 4\cos 2\theta \sin \theta + 3\sqrt{2} \cos 2\theta -4\sin \theta \]
を考える.

(1)$x=\sin \theta$とおく.$f(\theta)$を$x$で表せ.
(2)$f(\theta)$の最大値と最小値,およびそのときの$\theta$の値を求めよ.
(3)方程式$f(\theta) = k$が相異なる3つの解をもつような実数$k$の値の範囲を求めよ.
岡山大学 国立 岡山大学 2012年 第1問
$\mathrm{O}$を原点とする座標平面における曲線$\displaystyle C: \frac{x^2}{4}+y^2=1$上に,点$\mathrm{P} \displaystyle\left( 1,\ \frac{\sqrt{3}}{2} \right)$をとる.

(1)$C$の接線で直線$\mathrm{OP}$に平行なものをすべて求めよ.
(2)点$\mathrm{Q}$が$C$上を動くとき,$\triangle \mathrm{OPQ}$の面積の最大値と,最大値を与える$\mathrm{Q}$の座標をすべて求めよ.
岡山大学 国立 岡山大学 2012年 第3問
$a$を正の定数とし,座標平面上の$2$曲線$C_1:y=e^{x^2},\ C_2:y=ax^2$を考える.このとき以下の問いに答えよ.ただし必要ならば$\displaystyle \lim_{t \to +\infty} \frac{e^t}{t}=+\infty$であることを用いてもよい.

(1)$t>0$の範囲で,関数$\displaystyle f(t)=\frac{e^t}{t}$の最小値を求めよ.
(2)$2$曲線$C_1,\ C_2$の共有点の個数を求めよ.
(3)$C_1,\ C_2$の共有点の個数が$2$のとき,これらの$2$曲線で囲まれた領域を$y$軸のまわりに$1$回転させてできる立体の体積を求めよ.
岡山大学 国立 岡山大学 2012年 第2問
表の出る確率が$p$,裏の出る確率が$q$である硬貨を用意する.ここで$p,\ q$は正の定数で,$p+q=1$を満たすとする.座標平面における領域$D$を
\[ D= \{ (x,\ y) \ | \ 0 \leqq x \leqq 2,\ 0 \leqq y \leqq 2\} \]
とし,$D$上を動く点$\mathrm{Q}$を考える.$\mathrm{Q}$は点$(0,\ 0)$から出発し,硬貨を投げて表が出れば$x$軸方向に$+1$だけ進み,裏が出れば$y$軸方向に$+1$だけ進む.なお,この規則で$D$上を進めないときには,その回はその点にとどまるものとする.このとき以下の問いに答えよ.

(1)硬貨を$4$回投げて$\mathrm{Q}$が点$(2,\ 2)$に到達する確率$P_4$を求めよ.
(2)硬貨を$5$回投げて$5$回目に初めて$\mathrm{Q}$が点$(2,\ 2)$に到達する確率$P_5$を求めよ.
(3)$\displaystyle P_5 = \frac{1}{9}$のとき,$p$の値を求めよ.
北海道大学 国立 北海道大学 2012年 第3問
次の問に答えよ.

(1)$x \geqq 0$のとき,$\displaystyle x- \frac{x^3}{6} \leqq \sin x \leqq x$を示せ.
(2)$x \geqq 0$のとき,$\displaystyle \frac{x^3}{3}-\frac{x^5}{30} \leqq \int_0^x t\sin t\, dt \leqq \frac{x^3}{3}$を示せ.
(3)極限値
\[ \lim_{x \to 0} \frac{\sin x - x\cos x}{x^3} \]
を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。